Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Ordered group invariants for nonorientable one-dimensional generalized solenoids

Author: Inhyeop Yi
Journal: Proc. Amer. Math. Soc. 131 (2003), 1273-1282
MSC (1991): Primary 58F03, 58F12, 54H20
Published electronically: November 20, 2002
MathSciNet review: 1948120
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $f\colon X\to X$ be an edge-wrapping rule which presents a one-dimensional generalized solenoid $\overline{X}$, and let $M$ be the adjacency matrix of $f$. When $X$ is a wedge of circles and $f$ leaves the unique branch point fixed, we show that the stationary dimension group of $M$is an invariant of homeomorphism of $\overline{X}$even if $\overline{X}$ is not orientable.

References [Enhancements On Off] (What's this?)

  • 1. M. Barge and B. Diamond, Homeomorphisms of inverse limit spaces of one-dimensional maps, Fund. Math., 146 (1995), 509-537. MR 96b:54048
  • 2. M. Barge and B. Diamond, A complete invariant for the topology of substitution tiling spaces, Ergodic Theory Dynam. Systems, 21 (2001), 1333-1358.
  • 3. M. Barge, J. Jacklitch, and G. Vago, Homeomorphisms of One-dimensional Inverse Limits with Applications to Substitution Tilings, Unstable Manifolds, and Tent Maps, Geometry and Topology in Dynamics, Contemp. Math. 246 (1999), Amer. Math. Soc., 1-15. MR 2000j:37016
  • 4. M. Boyle and D. Handelman, Orbit equivalence, flow equivalence and ordered cohomology, Israel J. Math., 95 (1996), 169-210. MR 98a:46082
  • 5. O. Bratteli, P. Jorgensen, K. H. Kim and F. Rouch, Decidability of the isomorphism problem for stationary AF-algebras and the associated ordered simple dimension groups, Ergodic Theory Dynam. Systems, 21 (2001), 1625-1655. MR 2002h:46088
  • 6. F. Durand, B. Host and C. Skau, Substitution dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dynam. Systems, 19 (1999), 953-993. MR 2001i:46062
  • 7. E. Effros, Dimensions and $C^*$-algebras, CBMS Regional Conf. Ser. in Math. 46, Amer. Math. Soc., 1981. MR 84k:46042
  • 8. R. Fokkink, The structure of trajectories, Ph.D. Thesis, Technische Universiteit te Delft, 1991.
  • 9. A. Forrest, Cohomology of ordered Bratteli diagrams, To appear in Pacific J. Math.
  • 10. T. Giordano, I. Putnam and C. Skau, Topological orbit equivalence and $C^*$-crossed products, J. Reine Angew. Math., 469 (1995), 41-111. MR 97g:46085
  • 11. R. Herman, I. Putnam and C. Skau, Ordered Bratteli diagram, dimension groups and topological dynamics, Intern. J. Math., 3 (1992), 827-864. MR 94f:46096
  • 12. D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge Univ. Press, 1995. MR 97a:58050
  • 13. R. F. Williams, One-dimensional non-wandering sets, Topology, 6 (1967), 473-487. MR 36:897
  • 14. R. F. Williams, Classification of 1-dimensional attractors, Proc. Symp. Pure Math., 14 (1970), 341-361. MR 42:1134
  • 15. I. Yi, Canonical symbolic dynamics for one-dimensional generalized solenoids, Trans. Amer. Math. Soc., 353 (2001), 3741-3767. MR 2002h:37021
  • 16. I. Yi, Ordered group invariants for one-dimensional spaces, Fund. Math., 170 (2001), 267-286.
  • 17. A. Yu. Zhirov, Hyperbolic attractors of diffeomorphisms of orientable surfaces, Russian Acad. Sci. Sb. Math., 82 (1995), 135-174. MR 95c:58122

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 58F03, 58F12, 54H20

Retrieve articles in all journals with MSC (1991): 58F03, 58F12, 54H20

Additional Information

Inhyeop Yi
Affiliation: Department of Mathematics, University of Maryland, College Park, Maryland 20742
Address at time of publication: Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada V8W 3P4

Keywords: One-dimensional generalized solenoid, orientable double cover, ordered group
Received by editor(s): June 27, 2001
Published electronically: November 20, 2002
Communicated by: Michael Handel
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society