Ordered group invariants for nonorientable one-dimensional generalized solenoids

Author:
Inhyeop Yi

Journal:
Proc. Amer. Math. Soc. **131** (2003), 1273-1282

MSC (1991):
Primary 58F03, 58F12, 54H20

DOI:
https://doi.org/10.1090/S0002-9939-02-06794-1

Published electronically:
November 20, 2002

MathSciNet review:
1948120

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be an edge-wrapping rule which presents a one-dimensional generalized solenoid , and let be the adjacency matrix of . When is a wedge of circles and leaves the unique branch point fixed, we show that the stationary dimension group of is an invariant of homeomorphism of even if is not orientable.

**1.**M. Barge and B. Diamond,*Homeomorphisms of inverse limit spaces of one-dimensional maps*, Fund. Math.,**146**(1995), 509-537. MR**96b:54048****2.**M. Barge and B. Diamond,*A complete invariant for the topology of substitution tiling spaces*, Ergodic Theory Dynam. Systems,**21**(2001), 1333-1358.**3.**M. Barge, J. Jacklitch, and G. Vago,*Homeomorphisms of One-dimensional Inverse Limits with Applications to Substitution Tilings, Unstable Manifolds, and Tent Maps*, Geometry and Topology in Dynamics, Contemp. Math.**246**(1999), Amer. Math. Soc., 1-15. MR**2000j:37016****4.**M. Boyle and D. Handelman,*Orbit equivalence, flow equivalence and ordered cohomology*, Israel J. Math.,**95**(1996), 169-210. MR**98a:46082****5.**O. Bratteli, P. Jorgensen, K. H. Kim and F. Rouch,*Decidability of the isomorphism problem for stationary AF-algebras and the associated ordered simple dimension groups*, Ergodic Theory Dynam. Systems,**21**(2001), 1625-1655. MR**2002h:46088****6.**F. Durand, B. Host and C. Skau,*Substitution dynamical systems, Bratteli diagrams and dimension groups*, Ergodic Theory Dynam. Systems,**19**(1999), 953-993. MR**2001i:46062****7.**E. Effros,*Dimensions and -algebras*, CBMS Regional Conf. Ser. in Math.**46**, Amer. Math. Soc., 1981. MR**84k:46042****8.**R. Fokkink,*The structure of trajectories*, Ph.D. Thesis, Technische Universiteit te Delft, 1991.**9.**A. Forrest,*Cohomology of ordered Bratteli diagrams*, To appear in Pacific J. Math.**10.**T. Giordano, I. Putnam and C. Skau,*Topological orbit equivalence and -crossed products*, J. Reine Angew. Math.,**469**(1995), 41-111. MR**97g:46085****11.**R. Herman, I. Putnam and C. Skau,*Ordered Bratteli diagram, dimension groups and topological dynamics*, Intern. J. Math.,**3**(1992), 827-864. MR**94f:46096****12.**D. Lind and B. Marcus,*An introduction to symbolic dynamics and coding*, Cambridge Univ. Press, 1995. MR**97a:58050****13.**R. F. Williams,*One-dimensional non-wandering sets*, Topology,**6**(1967), 473-487. MR**36:897****14.**R. F. Williams,*Classification of 1-dimensional attractors*, Proc. Symp. Pure Math.,**14**(1970), 341-361. MR**42:1134****15.**I. Yi,*Canonical symbolic dynamics for one-dimensional generalized solenoids*, Trans. Amer. Math. Soc.,**353**(2001), 3741-3767. MR**2002h:37021****16.**I. Yi,*Ordered group invariants for one-dimensional spaces*, Fund. Math.,**170**(2001), 267-286.**17.**A. Yu. Zhirov,*Hyperbolic attractors of diffeomorphisms of orientable surfaces*, Russian Acad. Sci. Sb. Math.,**82**(1995), 135-174. MR**95c:58122**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
58F03,
58F12,
54H20

Retrieve articles in all journals with MSC (1991): 58F03, 58F12, 54H20

Additional Information

**Inhyeop Yi**

Affiliation:
Department of Mathematics, University of Maryland, College Park, Maryland 20742

Address at time of publication:
Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada V8W 3P4

Email:
inhyeop@math.umd.edu, yih@math.uvic.ca

DOI:
https://doi.org/10.1090/S0002-9939-02-06794-1

Keywords:
One-dimensional generalized solenoid,
orientable double cover,
ordered group

Received by editor(s):
June 27, 2001

Published electronically:
November 20, 2002

Communicated by:
Michael Handel

Article copyright:
© Copyright 2002
American Mathematical Society