The first cohomology group of the generalized Morava stabilizer algebra

Authors:
Hirofumi Nakai and Douglas C. Ravenel

Journal:
Proc. Amer. Math. Soc. **131** (2003), 1629-1639

MSC (2000):
Primary 55P42, 55T15; Secondary 14L05, 20Jxx

DOI:
https://doi.org/10.1090/S0002-9939-02-06718-7

Published electronically:
September 19, 2002

MathSciNet review:
1950296

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: There exists a -local spectrum with = . Its Adams-Novikov -term is isomorphic to

where

In this paper we determine the groups

for all . Its rank ranges from to depending on the value of .

**[Ich]**I. Ichigi.

The chromatic groups at the prime two.

To appear in Mem. Fac. Kochi Univ. (Math.).**[IK00]**I. Ichigi and K.Shimomura.

The chromatic -term .*Mem. Fac. Sci. Kochi Univ. (Math.)*, 21:63-71, 2000. MR**2000k:55018****[INR]**I. Ichigi, H. Nakai, and D. C. Ravenel.

The chromatic Ext groups .*Trans. Amer. Math. Soc*., 354:3789-3813, 2002.**[KS93]**N. Kodama and K. Shimomura.

On the homotopy groups of a spectrum related to Ravenel's spectra .*J. Fac. Educ. Tottori Univ. (Nat. Sci.)*, 42:17-30, 1993.**[KS01]**Y. Kamiya and K. Shimomura.

The homotopy groups .*Hiroshima Mathematical Journal*, 31:391-408, 2001.**[May66]**J. P. May.

The cohomology of restricted Lie algebras and of Hopf algebras.*Journal of Algebra*, 3:123-146, 1966. MR**33:1347****[MM65]**J. W. Milnor and J. C. Moore.

On the structure of Hopf algebras.*Annals of Mathematics*, 81(2):211-264, 1965. MR**30:4259****[MR77]**H. R. Miller and D. C. Ravenel.

Morava stabilizer algebras and the localization of Novikov's -term.*Duke Mathematical Journal*, 44:433-447, 1977. MR**56:16613****[MRW77]**H. R. Miller, D. C. Ravenel, and W. S. Wilson.

Periodic phenomena in the Adams-Novikov spectral sequence.*Annals of Mathematics*, 106:469-516, 1977. MR**56:16626****[MS93a]**M. E. Mahowald and K. Shimomura.

The Adams-Novikov spectral sequence for the -localization of a -spectrum.*Contemporary Mathematics*, 146:237-250, 1993. MR**94g:55012****[MS93b]**H. Mitsui and K. Shimomura.

The Ext groups .*J. Fac. Educ. Tottori Univ. (Nat. Sci.)*, 42:85-101, 1993.**[NRa]**H. Nakai and D. C. Ravenel.

The method of infinite descent in stable homotopy theory II.

To appear.**[NRb]**H. Nakai and D. C. Ravenel.

The structure of the general chromatic -term and .

To appear in Osaka J. Math.**[NY]**H. Nakai and D. Yoritomi.

The structure of the general chromatic -term for .

To appear.**[Rav86]**D. C. Ravenel.*Complex Cobordism and Stable Homotopy Groups of Spheres*.

Academic Press, New York, 1986.

Errata available online at`http://www.math.rochester.edu/u/drav/mu.html`. MR**87j:55003****[Rav00]**D. C. Ravenel.

The microstable Adams-Novikov spectral sequence.

In D. Arlettaz and K. Hess, editors,*Une dégustation topologique [Topological morsels]: homotopy theory in the Swiss Alps (Arolla, 1999)*, volume 265 of*Contemporary Mathematics*, pages 193-209, Providence, Rhode Island, 2000. American Mathematical Society. MR**2002b:55024****[Rav02]**D. C. Ravenel.

The method of infinite descent in stable homotopy theory I.

In D. M. Davis, editor,*Recent Progress in Homotopy Theory*, volume 293 of*Contemporary Mathematics*, pages 251-284, Providence, Rhode Island, 2002. American Mathematical Society.**[Shia]**K. Shimomura.

The homotopy groups of the -localized mahowald spectrum .*Forum Mathematicum*, 7:685-707. MR**96m:55023****[Shic]**K. Shimomura.

The homotopy groups . Recent progress in homotopy theory (Baltimore, MD, 2000), 285-297, Contemp. Math., 293, Amer. Math. Soc., Providence, RI, 2002.**[Shi95]**K. Shimomura.

Chromatic -terms - up to April 1995.*J. Fac. Educ. Tottori Univ. (Nat. Sci.)*, 44:1-6, 1995.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
55P42,
55T15,
14L05,
20Jxx

Retrieve articles in all journals with MSC (2000): 55P42, 55T15, 14L05, 20Jxx

Additional Information

**Hirofumi Nakai**

Affiliation:
Oshima National College of Maritime Technology, 1091-1 komatsu Oshima-cho Oshima-gun, Yamaguchi 742-2193, Japan

Email:
nakai@c.oshima-k.ac.jp

**Douglas C. Ravenel**

Affiliation:
Department of Mathematics, University of Rochester, Rochester, New York 14627

Email:
drav@math.rochester.edu

DOI:
https://doi.org/10.1090/S0002-9939-02-06718-7

Received by editor(s):
June 14, 2001

Received by editor(s) in revised form:
December 19, 2001

Published electronically:
September 19, 2002

Additional Notes:
The second author acknowledges support from NSF grant DMS-9802516

Communicated by:
Paul Goerss

Article copyright:
© Copyright 2002
American Mathematical Society