Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

The first cohomology group of the generalized Morava stabilizer algebra


Authors: Hirofumi Nakai and Douglas C. Ravenel
Journal: Proc. Amer. Math. Soc. 131 (2003), 1629-1639
MSC (2000): Primary 55P42, 55T15; Secondary 14L05, 20Jxx
Published electronically: September 19, 2002
MathSciNet review: 1950296
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: There exists a $p$-local spectrum $T(m)$ with $BP_{*}(T(m))$= $BP_{*}[t_{1},\dots ,t_{m}]$. Its Adams-Novikov $E_2$-term is isomorphic to

\begin{displaymath}\text{Ext}_{\Gamma(m+1)}(BP_*,BP_*), \end{displaymath}

where

\begin{displaymath}\Gamma (m+1) = BP_{*} (BP)/ \left(t_{1},\dots ,t_{m}\right) = BP_{*}[t_{m+1},t_{m+2},\dots ]. \end{displaymath}

In this paper we determine the groups

\begin{displaymath}\text{Ext}^{1}_{\Gamma (m+1)} (BP_{*},v_{n}^{-1}BP_{*}/I_{n}) \end{displaymath}

for all $m,n>0$. Its rank ranges from $n+1$ to $n^{2}$depending on the value of $m$.


References [Enhancements On Off] (What's this?)

  • [Ich] I. Ichigi.
    The chromatic groups $H^0M_2^1(T(2))$ at the prime two.
    To appear in Mem. Fac. Kochi Univ. (Math.).
  • [IK00] Ippei Ichigi and Katsumi Shimomura, The chromatic 𝐸₁-term 𝐸𝑥𝑡⁰(𝑣⁻¹₃𝐵𝑃_{∗}/(3,𝑣₁,𝑣^{∞}₂)[𝑡₁]), Mem. Fac. Sci. Kochi Univ. Ser. A Math. 21 (2000), 63–71. MR 1744540 (2000k:55018)
  • [INR] I. Ichigi, H. Nakai, and D. C. Ravenel.
    The chromatic Ext groups $\text{Ext}_{\Gamma(m+1)}^{0}(BP_{*},M_2^{1})$. Trans. Amer. Math. Soc., 354:3789-3813, 2002.
  • [KS93] N. Kodama and K. Shimomura.
    On the homotopy groups of a spectrum related to Ravenel's spectra $T(n)$.
    J. Fac. Educ. Tottori Univ. (Nat. Sci.), 42:17-30, 1993.
  • [KS01] Y. Kamiya and K. Shimomura.
    The homotopy groups $\pi_*(L\sb 2V(0)\wedge T(k))$.
    Hiroshima Mathematical Journal, 31:391-408, 2001.
  • [May66] J. P. May, The cohomology of restricted Lie algebras and of Hopf algebras, J. Algebra 3 (1966), 123–146. MR 0193126 (33 #1347)
  • [MM65] John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211–264. MR 0174052 (30 #4259)
  • [MR77] Haynes R. Miller and Douglas C. Ravenel, Morava stabilizer algebras and the localization of Novikov’s 𝐸₂-term, Duke Math. J. 44 (1977), no. 2, 433–447. MR 0458410 (56 #16613)
  • [MRW77] Haynes R. Miller, Douglas C. Ravenel, and W. Stephen Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math. (2) 106 (1977), no. 3, 469–516. MR 0458423 (56 #16626)
  • [MS93a] Mark Mahowald and Katsumi Shimomura, The Adams-Novikov spectral sequence for the 𝐿₂ localization of a 𝑣₂ spectrum, Algebraic topology (Oaxtepec, 1991) Contemp. Math., vol. 146, Amer. Math. Soc., Providence, RI, 1993, pp. 237–250. MR 1224918 (94g:55012), http://dx.doi.org/10.1090/conm/146/01226
  • [MS93b] H. Mitsui and K. Shimomura.
    The Ext groups $H^0M^1_2(1)$.
    J. Fac. Educ. Tottori Univ. (Nat. Sci.), 42:85-101, 1993.
  • [NRa] H. Nakai and D. C. Ravenel.
    The method of infinite descent in stable homotopy theory II.
    To appear.
  • [NRb] H. Nakai and D. C. Ravenel.
    The structure of the general chromatic $E_1$-term $\text{Ext}_{\Gamma(m+1)}^0 (M_1^1)$ and $\text{Ext}^1_{\Gamma(m+1)}(BP_*/(p))$.
    To appear in Osaka J. Math.
  • [NY] H. Nakai and D. Yoritomi.
    The structure of the general chromatic $E_1$-term $\text{\rm Ext}_{\Gamma(2)}^0(M_2^1)$ for $p=2$.
    To appear.
  • [Rav86] Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR 860042 (87j:55003)
  • [Rav00] Douglas C. Ravenel, The microstable Adams-Novikov spectral sequence, Une dégustation topologique [Topological morsels]: homotopy theory in the Swiss Alps (Arolla, 1999) Contemp. Math., vol. 265, Amer. Math. Soc., Providence, RI, 2000, pp. 193–209. MR 1803959 (2002b:55024), http://dx.doi.org/10.1090/conm/265/04250
  • [Rav02] D. C. Ravenel.
    The method of infinite descent in stable homotopy theory I.
    In D. M. Davis, editor, Recent Progress in Homotopy Theory, volume 293 of Contemporary Mathematics, pages 251-284, Providence, Rhode Island, 2002. American Mathematical Society.
  • [Shia] Katsumi Shimomura, The homotopy groups of the 𝐿₂-localized Mahowald spectrum 𝑋⟨1⟩, Forum Math. 7 (1995), no. 6, 685–707. MR 1359422 (96m:55023), http://dx.doi.org/10.1515/form.1995.7.685
  • [Shic] K. Shimomura.
    The homotopy groups $\pi_*(L_n T(m)\wedge V(n-2))$. Recent progress in homotopy theory (Baltimore, MD, 2000), 285-297, Contemp. Math., 293, Amer. Math. Soc., Providence, RI, 2002.
  • [Shi95] K. Shimomura.
    Chromatic $E_1$-terms - up to April 1995.
    J. Fac. Educ. Tottori Univ. (Nat. Sci.), 44:1-6, 1995.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 55P42, 55T15, 14L05, 20Jxx

Retrieve articles in all journals with MSC (2000): 55P42, 55T15, 14L05, 20Jxx


Additional Information

Hirofumi Nakai
Affiliation: Oshima National College of Maritime Technology, 1091-1 komatsu Oshima-cho Oshima-gun, Yamaguchi 742-2193, Japan
Email: nakai@c.oshima-k.ac.jp

Douglas C. Ravenel
Affiliation: Department of Mathematics, University of Rochester, Rochester, New York 14627
Email: drav@math.rochester.edu

DOI: http://dx.doi.org/10.1090/S0002-9939-02-06718-7
PII: S 0002-9939(02)06718-7
Received by editor(s): June 14, 2001
Received by editor(s) in revised form: December 19, 2001
Published electronically: September 19, 2002
Additional Notes: The second author acknowledges support from NSF grant DMS-9802516
Communicated by: Paul Goerss
Article copyright: © Copyright 2002 American Mathematical Society