On quasinilpotent operators

Authors:
Il Bong Jung, Eungil Ko and Carl Pearcy

Journal:
Proc. Amer. Math. Soc. **131** (2003), 2121-2127

MSC (2000):
Primary 47A15

DOI:
https://doi.org/10.1090/S0002-9939-03-06895-3

Published electronically:
February 5, 2003

MathSciNet review:
1963758

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we modify a new technique of Enflo for producing hyperinvariant subspaces to obtain a much improved version of his ``two sequences'' theorem with a somewhat simpler proof. As a corollary we get a proof of the ``best'' theorem (due to V. Lomonosov) known about hyperinvariant subspaces for quasinilpotent operators that uses neither the Schauder-Tychonoff fixed point theorem nor the more recent techniques of Lomonosov.

**[1]**W. Arveson and J. Feldman,*A note on invariant subspaces*, Michigan Math. J.**15**(1968), 61-64. MR**36:6969****[2]**S. Ansari and P. Enflo,*Extremal vectors and invariant subspaces*, Trans. Amer. Math. Soc.**350**(1998), 539-558. MR**98d:47019****[3]**N. Aronszajn and K. Smith*, Invariant subspaces of completely continuous operators*, Ann. of Math.**60**(1954), 345-350. MR**16:488b****[4]**A. Bernstein and A. Robinson,*Solution of an invariant subspace problem of K.T. Smith and P.R. Halmos*, Pacific J. Math.**16**(1966), 421-431. MR**33:1724****[5]**S. Brown,*Hyponormal operators with thick spectrum have invariant subspaces*, Ann. of Math.**125**(1987), 93-103. MR**88c:47010****[6]**B. Chevreau, W. Li, and C. Pearcy,*A new Lomonosov lemma*, J. Operator Theory**40**(1998), 409-417. MR**2000b:47014****[7]**D. Deckard, R. Douglas, and C. Pearcy,*On invariant subspaces of quasitriangular operators*, Amer. J. Math.**9**(1969), 637-647. MR**41:859****[8]**P. Enflo and V. Lomonosov,*Some aspects of the invariant subspace problem*, preprint.**[9]**P. Halmos,*Invariant subspaces of polynomially compact operators*, Pacific J. Math.**16**(1966), 433-437. MR**33:1725****[10]**-,*Quasitriangular operators*, Acta Sci. Math.(Szeged)**29**(1968), 283-293. MR**38:2627****[11]**V. Lomonosov,*On invariant subspaces of families of operators commuting with a completely continuous operator*(in Russian), Funkcional Anal. i Prilozen**7**(1973), 55-56. MR**54:8319****[12]**-,*An extension of Burnside's theorem to infinite dimensional spaces*, Israel J. Math.**75**(1991), 329-339. MR**93h:47007****[13]**-,*On real invariant subspaces of bounded operators with compact imaginary part*, Proc. Amer. Math. Soc.**115**(1992), 775-777. MR**92i:47003****[14]**C. Pearcy and N. Salinas,*An invariant subspace theorem*, Michigan Math. J.**20**(1973), 21-31. MR**47:5623****[15]**C. Pearcy and A. Shields,*A survey of the Lomonosov technique in the theory of invariant subspaces*, Topics in Operator Theory, Amer. Math. Soc. Surveys, No.**13**(1974), 219-229. MR**50:8113****[16]**A. Simonic,*An extension of Lomonosov's techniques to non-compact operators*, Trans. Amer. Math. Soc.**348**(1996), 975-995. MR**96j:47005**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
47A15

Retrieve articles in all journals with MSC (2000): 47A15

Additional Information

**Il Bong Jung**

Affiliation:
Department of Mathematics, Kyungpook National University, Taegu 702-701, Korea

Email:
ibjung@kyungpook.ac.kr

**Eungil Ko**

Affiliation:
Department of Mathematics, Ewha Women’s University, Seoul 120-750, Korea

Email:
eiko@mm.ewha.ac.kr

**Carl Pearcy**

Affiliation:
Department of Mathematics, Texas A&M University, College Station, Texas 77843

Email:
pearcy@math.tamu.edu

DOI:
https://doi.org/10.1090/S0002-9939-03-06895-3

Keywords:
Invariant subspaces,
Enflo technique,
extremal vectors

Received by editor(s):
February 6, 2002

Published electronically:
February 5, 2003

Communicated by:
David R. Larson

Article copyright:
© Copyright 2003
American Mathematical Society