Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

On Schwarz type inequalities


Authors: K. Tanahashi, A. Uchiyama and M. Uchiyama
Journal: Proc. Amer. Math. Soc. 131 (2003), 2549-2552
MSC (2000): Primary 47A30, 47A63, 47B15
Published electronically: November 27, 2002
MathSciNet review: 1974654
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show Schwarz type inequalities and consider their converses. A continuous function $f : [0, \infty) \rightarrow [0, \infty)$ is said to be semi-operator monotone on $(a,b)$ if $ \{f( t^{\frac{1}{2}} ) \}^{2}$ is operator monotone on $(a^{2},b^{2})$. Let $T$ be a bounded linear operator on a complex Hilbert space ${\mathcal H}$ and $ T = U \vert T \vert $ be the polar decomposition of $ T$. Let $ 0 \leq A, B \in B( {\mathcal H})$ and $ \Vert Tx \Vert \leq \Vert Ax\Vert, \Vert T^{*} y \Vert \leq \Vert By \Vert $ for $ x, y \in {\mathcal H}$. (1) If a non-zero function $f$ is semi-operator monotone on $(0, \infty)$, then $ \vert \langle Tx, y \rangle \vert \leq \Vert f(A) x \Vert \Vert g(B) y \Vert $ for $ x, y \in {\mathcal H}$, where $ g(t) = t/f(t)$. (2) If $f, g$ are semi-operator monotone on $(0, \infty)$, then $ \vert \langle U f(\vert T \vert)g(\vert T \vert)x, y \rangle \vert \leq \Vert f(A) x \Vert \Vert g(B) y \Vert $ for $ x, y \in {\mathcal H}$. Also, we show converses of these inequalities, which imply that semi-operator monotonicity is necessary.


References [Enhancements On Off] (What's this?)

  • 1. J. S. Aujla, Perturbation bounds for certain operator functions, Math. Inequal. Appl., 4 (2001), 609-617. MR 2002h:47015
  • 2. J. I. Fujii and M. Fujii, An analogue to Hansen's theory of generalized Löwner's functions, Math. Japonica, 35 (1990), 327-330. MR 91d:47015
  • 3. T. Furuta, An extension of the Heinz-Kato theorem, Proc. Amer. Math. Soc., 120 (1994), 785-787. MR 94e:47034
  • 4. E. Hansen and G. K. Pedersen, Jensen's inequality for operators and Löwer's theorem, Math. Ann., 258 (1982), 229-241.
  • 5. E. Heinz, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann., 123 (1951), 415-438. MR 13:471f
  • 6. T. Kato, Notes on some inequalities for linear operators, Math. Ann., 125 (1952), 208-212. MR 14:766e
  • 7. M. Uchiyama, Further extension of the Heinz-Kato-Furuta inequality, Proc. Amer. Math. Soc., 127 (1999), 2899-2904. MR 2000a:47045

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47A30, 47A63, 47B15

Retrieve articles in all journals with MSC (2000): 47A30, 47A63, 47B15


Additional Information

K. Tanahashi
Affiliation: Department of Mathematics, Tohoku Pharmaceutical University, Sendai 981-8558, Japan
Email: tanahasi@tohoku-pharm.ac.jp

A. Uchiyama
Affiliation: Mathematical Institute, Tohoku University, Sendai 980-8578, Japan
Email: uchiyama@math.tohoku.ac.jp

M. Uchiyama
Affiliation: Department of Mathematics, Fukuoka University of Education, Munakata 811-4192, Japan
Email: uchiyama@fukuoka-edu.ac.jp

DOI: http://dx.doi.org/10.1090/S0002-9939-02-06889-2
PII: S 0002-9939(02)06889-2
Keywords: Schwarz inequality, Heinz-Kato-Furuta inequality
Received by editor(s): December 17, 2001
Received by editor(s) in revised form: March 29, 2002
Published electronically: November 27, 2002
Additional Notes: This research was supported by Grant-in-Aid Research No. 12640187.
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2002 American Mathematical Society