Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Reconstruction of functions in spline subspaces from local averages


Authors: Wenchang Sun and Xingwei Zhou
Journal: Proc. Amer. Math. Soc. 131 (2003), 2561-2571
MSC (2000): Primary 94A20; Secondary 42C40, 42C15
DOI: https://doi.org/10.1090/S0002-9939-03-07082-5
Published electronically: March 18, 2003
MathSciNet review: 1974656
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we study the reconstruction of functions in spline subspaces from local averages. We present an average sampling theorem for shift invariant subspaces generated by cardinal B-splines and give the optimal upper bound for the support length of averaging functions. Our result generalizes an earlier result by Aldroubi and Gröchenig.


References [Enhancements On Off] (What's this?)

  • 1. A.Aldroubi and K.Gröchenig, Beuling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces, J. Fourier Anal. Appl., 6 (2000), 93-103. MR 2001i:42057
  • 2. A.Aldroubi and M.Unser, Families of wavelet transforms in connection with Shannon's sampling theory and the Gabor transform, Wavelets: A tutorial in Theory and Applications (C.K.Chui, Ed.), Academic Press, Boston, 1992, pp.509-528. MR 93a:94003
  • 3. A.Aldroubi and M.Unser, Sampling procedures in function spaces and asymptotic equivalence with Shannon's sampling theory, Numer. Funct. Anal. and Optimiz., 15 (1994), 1-21. MR 95a:94002
  • 4. J.J.Benedetto, Irregular sampling and frames, Wavelets: A Tutorial in Theory and Applications (C.K.Chui, Ed.), Academic Press, Boston, 1992, pp.445-507. MR 93c:42030
  • 5. P.L.Butzer and J.Lei, Errors in truncated sampling series with measured sampled values for non-necessarily bandlimited functions, Functiones et Approximation, 26 (1998), 25-39. MR 99m:42003
  • 6. P.L.Butzer and J.Lei, Approximation of signals using measured sampled values and error analysis, Comm. Appl. Anal., 4 (2000), 245-255. MR 2001i:94033
  • 7. W.Chen, S.Itoh, and J.Shiki, Irregular sampling theorems for wavelet subspaces, IEEE Trans. Inform. Theory, 44 (1998), 1131-1142. MR 99e:94008
  • 8. C.K.Chui, An Introduction to Wavelets , Academic Press, New York, 1992. MR 93f:42055
  • 9. I.Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992. MR 93e:42045
  • 10. H.Feichtinger and K.Gröchenig, Iterative reconstruction of multivariate band-limited functions from irregular sampling values, SIAM J. Math. Anal., 23 (1992), 244-261. MR 93a:94006
  • 11. H.Feichtinger and K.Gröchenig, Irregular sampling theorems and series expansions of band-limited functions, J. Math. Anal. Appl., 167 (1992), 530-556. MR 93g:41003
  • 12. H.Feichtinger and K.Gröchenig, Error analysis in regular and irregular sampling theory, Appl. Anal., 50 (1992), 167-189. MR 95b:65160
  • 13. H.Feichtinger and K.Gröchenig, Theory and practice of irregular sampling, Wavelets: Mathematics and Applications (J.Benedetto and M.Frazier, Eds.), CRC Press Inc., 1994, pp.305-363. MR 94i:94008
  • 14. K.Gröchenig, Reconstruction algorithms in irregular sampling, Math. Comput., 59 (1992), 181-194. MR 93a:41025
  • 15. A.J.E.M.Janssen, The Zak transform and sampling theorem for wavelet subspaces, IEEE Trans. Signal processing, 41 (1993), 3360-3364.
  • 16. Y.Liu, Irregular sampling for spline wavelet subspaces, IEEE Trans. Inform. Theory, 42 (1996), 623-627. MR 97b:94006
  • 17. Y.Liu and G.Walter, Irregular sampling in wavelet subspaces, J. Fourier Anal. Appl., 2 (1995), 181-189. MR 96k:42033
  • 18. W.Sun and X.Zhou, Frames and sampling theorem, Science in China, Series A, 41 (1998), 606-612. MR 99m:94015
  • 19. W.Sun and X.Zhou, Sampling theorem for wavelet subspaces: error estimate and irregular sampling, IEEE Trans. Signal Processing, 48 (2000), 223-226.
  • 20. W.Sun and X.Zhou, Average sampling theorems for shift invariant subspaces, Science in China, Series E, 43 (2000), 524-530. MR 2001m:94030
  • 21. W.Sun and X.Zhou, Average sampling in spline subspaces, Applied Mathematics Letters, 15(2002), 233-237. MR 2003a:94026
  • 22. M.Unser and A.Aldroubi, A general sampling theory for nonideal acquisition devices, IEEE Trans. Signal Processing, 42 (1994), 2915-2925.
  • 23. G.Walter, A sampling theorem for wavelet subspaces, IEEE Trans. Inform. Theory, 38 (1992), 881-884. MR 93e:94006
  • 24. R.G.Wiley, Recovery of band-limited signals from unequally spaced samples, IEEE Trans. Comm., 26 (1978), 135-137.
  • 25. X.G.Xia and Z.Zhang, On sampling theorem, wavelets, and wavelet transforms, IEEE Transactions on Signal Processing, 41 (1993), 2524-2535.
  • 26. R.M.Young, An Introduction to Non-Harmonic Fourier Series, Academic, New York, 1980. MR 81m:42027
  • 27. X.Zhou, W.Sun, On the sampling theorem for wavelet subspaces, J. Fourier Anal. Appl., 5 (1999), 347-354. MR 2001i:42025

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 94A20, 42C40, 42C15

Retrieve articles in all journals with MSC (2000): 94A20, 42C40, 42C15


Additional Information

Wenchang Sun
Affiliation: Department of Mathematics, Nankai University, Tianjin 300071, People’s Republic of China
Email: sunwch@nankai.edu.cn

Xingwei Zhou
Affiliation: Department of Mathematics, Nankai University, Tianjin 300071, People’s Republic of China
Email: xwzhou@nankai.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-03-07082-5
Keywords: Average sampling, sampling theorems, spline subspaces
Received by editor(s): May 11, 2001
Published electronically: March 18, 2003
Additional Notes: This work was supported by the Research Fund for the Doctoral Program of Higher Education, the National Natural Science Foundation of China (Grant Nos. 10171050 and 10201014), the Mathematical Tianyuan Foundation(Grant No. TY10126007), and the Liuhui Center for Applied Mathematics
Communicated by: David R. Larson
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society