Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A note on the imbedding theorem of Browder and Ton

Author: J. Berkovits
Journal: Proc. Amer. Math. Soc. 131 (2003), 2963-2966
MSC (2000): Primary 47H05, 78M99
Published electronically: April 9, 2003
MathSciNet review: 1974355
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The imbedding theorem of Browder and Ton states that for any real separable Banach space $X$ there exist a real separable Hilbert space $H$ and a compact linear injection $\psi:H\to X$ such that $\psi(H)$ is dense in $X.$ We shall give a short and elementary new proof to this result. We also briefly discuss the corresponding result without the completeness assumption.

References [Enhancements On Off] (What's this?)

  • 1. Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR 0450957
  • 2. Ja. I. Al′ber, The solution of nonlinear equations with monotone operators in a Banach space, Sibirsk. Mat. Ž. 16 (1975), 3–11, 195 (Russian). MR 0370285
  • 3. Herbert Amann, Ein Existenz- und Eindeutigkeitssatz für die Hammersteinsche Gleichung in Banachräumen, Math. Z. 111 (1969), 175–190 (German). MR 0254687
  • 4. Juha Berkovits, On the degree theory for nonlinear mappings of monotone type, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 58 (1986), 58. MR 846256
  • 5. Juha Berkovits and Vesa Mustonen, On the topological degree for mappings of monotone type, Nonlinear Anal. 10 (1986), no. 12, 1373–1383. MR 869546, 10.1016/0362-546X(86)90108-2
  • 6. Juha Berkovits and Matti Tienari, Topological degree theory for some classes of multis with applications to hyperbolic and elliptic problems involving discontinuous nonlinearities, Dynam. Systems Appl. 5 (1996), no. 1, 1–18. MR 1381318
  • 7. Felix E. Browder and Bui An Ton, Nonlinear functional equations in Banach spaces and elliptic super-regularization, Math. Z. 105 (1968), 177–195. MR 0232256
  • 8. A. A. Khan, A regularization approach for variational inequalities, Comput. Math. Appl. 42 (2001), no. 1-2, 65–74. MR 1834466, 10.1016/S0898-1221(01)00131-6
  • 9. Dan Pascali and Silviu Sburlan, Nonlinear mappings of monotone type, Martinus Nijhoff Publishers, The Hague; Sijthoff & Noordhoff International Publishers, Alphen aan den Rijn, 1978. MR 531036
  • 10. Christian G. Simader, Über schwache Lösungen des Dirichletproblems für streng nichtlineare elliptische Differentialgleichungen, Math. Z. 150 (1976), no. 1, 1–26 (German). MR 0420001
  • 11. J. R. L. Webb, On the Dirichlet problem for strongly non-linear elliptic operators in unbounded domains, J. London Math. Soc. (2) 10 (1975), 163–170. MR 0393836

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47H05, 78M99

Retrieve articles in all journals with MSC (2000): 47H05, 78M99

Additional Information

J. Berkovits
Affiliation: Department of Mathematical Sciences, University of Oulu, P.O. Box 3000, FIN-90014 Oulu, Finland

Keywords: Compact imbedding
Received by editor(s): May 30, 2002
Published electronically: April 9, 2003
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2003 American Mathematical Society