Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Discrete spectra of $C^{*}$-algebras and complemented submodules in Hilbert $C^{*}$-modules


Author: Masaharu Kusuda
Journal: Proc. Amer. Math. Soc. 131 (2003), 3075-3081
MSC (2000): Primary 46L05, 46L08
DOI: https://doi.org/10.1090/S0002-9939-03-06855-2
Published electronically: February 6, 2003
MathSciNet review: 1993216
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $A$ be a $C^{*}$-algebra and let $X$ be a full (right) Hilbert $A$-module. It is shown that if the spectrum $\widehat A$ of $A$ is discrete, then every closed $\mathcal{K}(X)$-$A$-submodule of $X$ is complemented in $X$, and conversely that if $\widehat A$ is a $T_{1}$-space and if every closed $\mathcal{K}(X)$-$A$-submodule of $X$ is complemented in $X$, then $\widehat A$ is discrete.


References [Enhancements On Off] (What's this?)

  • 1. J. Dixmier, $C^{*}$-algebras, North Holland, New York, 1982. MR 56:16388
  • 2. K. K. Jensen and K. Thomsen, Elements of KK-theory, Birkhäuser, New York, 1991. MR 94b:19008
  • 3. I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), 839-853. MR 15:327f
  • 4. M. Kusuda, Three-space problems in discrete spectra of $C^{*}$-algebras and dual $C^{*}$-algebras, Proc. Royal Soc. Edinburgh 131A (2001), 701-707.
  • 5. M. Kusuda, Morita equivalence for $C^{*}$-algebras with the weak Banach-Saks property, Quart. J. Math. 52 (2001), 455-461.
  • 6. M. Kusuda, Morita equivalence for scattered $C^{*}$-algebras and the Radon-Nikodým property for imprimitivity bimodules, Rev. Roum. Math. Pures et Appl. 46 (2001), 761-773.
  • 7. E. C. Lance, Hilbert $C^{*}$-modules, London Math. Soc. Lecture Note Series Vol. 210, Cambridge Univ. Press, Cambridge, 1994. MR 96k:46100
  • 8. G. K. Pedersen, $C^{*}$-Algebras and their automorphism groups, Academic Press, London, 1979. MR 81e:46037
  • 9. I. Raeburn and D. P. Williams, Morita equivalence and continuous-trace $C^{*}$-algebras, Math. Surveys Monographs Vol. 60, Amer. Math. Soc., Providence, 1998. MR 2000c:46108
  • 10. M. A. Rieffel, Induced representations of $C^{*}$-Algebras, Adv. Math. 13 (1974), 176-257. MR 50:5489

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L05, 46L08

Retrieve articles in all journals with MSC (2000): 46L05, 46L08


Additional Information

Masaharu Kusuda
Affiliation: Department of Mathematics, Faculty of Engineering, Kansai University, Yamate-cho 3-3-35, Suita, Osaka 564-8680, Japan
Email: kusuda@ipcku.kansai-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-03-06855-2
Keywords: Hilbert $C^{*}$-module, complemented subspace
Received by editor(s): November 6, 2001
Received by editor(s) in revised form: April 23, 2002
Published electronically: February 6, 2003
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society