Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Higher dimensional aposyndetic decompositions


Author: James T. Rogers Jr.
Journal: Proc. Amer. Math. Soc. 131 (2003), 3285-3288
MSC (2000): Primary 54F15; Secondary 54F50
DOI: https://doi.org/10.1090/S0002-9939-03-06888-6
Published electronically: February 14, 2003
MathSciNet review: 1992870
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $X$ be a homogeneous, decomposable continuum that is not aposyndetic. The Aposyndetic Decomposition Theorem yields a cell-like decomposition of $X$ into homogeneous continua with quotient space $Y$ being an aposyndetic, homogeneous continuum.

Assume the dimension of $X$ is greater than one. About 20 years ago the author asked the following questions:

Can this aposyndetic decomposition raise dimension? Can it lower dimension? We answer these questions by proving the following theorem.

Theorem. The dimension of the quotient space $Y$ is one.


References [Enhancements On Off] (What's this?)

  • [B] R. H. Bing, Higher dimensional hereditarily indecomposable continua., Trans. Amer. Math. Soc. 21 (1951), 267-273. MR 13:265c
  • [HW] W. Hurewicz and J. Wallman, Dimension Theory, Princeton Univ. Press, Princeton, N.J., 1948.
  • [J1] F. Burton Jones, The aposyndetic decomposition of homogeneous continua, Topology Proc. 8 (1983), 51-54. MR 85g:54023
  • [J2] F. Burton Jones, Certain homogeneous unicoherent indecomposable continua, Proc. Amer. Math. Soc. 2 (1951), 855-859. MR 13:573a
  • [Kra] J. Krasinkiewicz, On mappings with hereditarily indecomposable fibers, Bull. Polish Acad. Sci. Math. 44 (1996), 147-156. MR 97g:54016
  • [Kru] P. Krupski, The disjoint arcs property for homogeneous curves, Fund. Math. 146 (1995), 159-169. MR 96a:54049
  • [L] M. Levin, Bing maps and finite dimensional maps, Fund. Math. 151 (1996), 47-52. MR 97e:54031
  • [N] S. B. Nadler, Jr., Continuum Theory, Marcel Dekker, Inc. New York, 1992. MR 93m:54002
  • [R1] J. T. Rogers, Jr., Cell-like decompositions of homogeneous continua, Proc. Amer. Math. Soc. 87 (1983), 375-377. MR 84e:54040
  • [R2] J. T. Rogers, Jr., Completely regular mappings and homogeneous aposyndetic continua, Canad. J. Math. 33 (1981), 450-453. MR 83a:54012
  • [R3] J. T. Rogers, Jr., Decompositions of continua over the hyperbolic plane, Trans. Amer. Math. Soc. 308 (1988), 277-291. MR 90a:54091
  • [R4] J. T. Rogers, Jr., Homogeneous continua, Topology Proc. 8 (1983), 213-233.
  • [R5] J. T. Rogers, Jr., Homogeneous hereditarily indecomposable continua are tree-like, Houston J. Math. 8 (1982), 421-428. MR 84b:54072
  • [R6] J. T. Rogers, Jr., Orbits of higher-dimensional, hereditarily indecomposable continua, Proc. Amer. Math. Soc. 95 (1985), 483-486. MR 86k:54054
  • [S] E. H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York, 1966.
  • [W] J. J. Walsh, Dimension, cohomological dimension, and cell-like mappings. In ``Shape Theory and Geometric Topology'' (S. Mardesic, and J. Segal, eds.), Lecture Notes in Math, No. 870, Springer-Verlag, Berlin and New York, 1981, 105-118. MR 83a:57021

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 54F15, 54F50

Retrieve articles in all journals with MSC (2000): 54F15, 54F50


Additional Information

James T. Rogers Jr.
Affiliation: Department of Mathematics, Tulane University, New Orleans, Louisiana 70118
Email: jim@math.tulane.edu

DOI: https://doi.org/10.1090/S0002-9939-03-06888-6
Keywords: Continuum, homogeneous, aposyndetic decomposition, terminal subcontinuum, cell-like
Received by editor(s): July 19, 2001
Received by editor(s) in revised form: May 9, 2002
Published electronically: February 14, 2003
Communicated by: Ronald A. Fintushel
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society