Asymptotics for the multiplicities in the cocharacters of some PI-algebras

Authors:
Francesca Benanti, Antonio Giambruno and Irina Sviridova

Journal:
Proc. Amer. Math. Soc. **132** (2004), 669-679

MSC (2000):
Primary 16R10, 16P90

Published electronically:
August 13, 2003

MathSciNet review:
2019941

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider associative PI-algebras over a field of characteristic zero. We study the asymptotic behavior of the sequence of multiplicities of the cocharacters for some significant classes of algebras. We also give a characterization of finitely generated algebras for which this behavior is linear or quadratic.

**1.**A. Berele and A. Regev,*Applications of hook Young diagrams to P.I. algebras*, J. Algebra**82**(1983), no. 2, 559–567. MR**704771**, 10.1016/0021-8693(83)90167-9**2.**Allan Berele and Amitai Regev,*On the codimensions of the verbally prime P.I. algebras*, Israel J. Math.**91**(1995), no. 1-3, 239–247. MR**1348314**, 10.1007/BF02761648**3.**A. Berele and A. Regev,*Codimensions of products and of intersections of verbally prime 𝑇-ideals*, Israel J. Math.**103**(1998), 17–28. MR**1613536**, 10.1007/BF02762265**4.**Charles W. Curtis and Irving Reiner,*Representation theory of finite groups and associative algebras*, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962. MR**0144979****5.**Vesselin Drensky,*Free algebras and PI-algebras*, Springer-Verlag Singapore, Singapore, 2000. Graduate course in algebra. MR**1712064****6.**Vesselin Drensky,*Codimensions of 𝑇-ideals and Hilbert series of relatively free algebras*, J. Algebra**91**(1984), no. 1, 1–17. MR**765766**, 10.1016/0021-8693(84)90121-2**7.**Veselin S. Drenski,*Extremal varieties of algebras. I*, Serdica**13**(1987), no. 4, 320–332 (Russian). MR**929452**

Veselin S. Drenski,*Extremal varieties of algebras. II*, Serdica**14**(1988), no. 1, 20–27 (Russian). MR**944480****8.**V. S. Drensky and M. Kassabov,*Growth of nonmatrix varieties of algebras*, preprint.**9.**Edward Formanek,*Invariants and the ring of generic matrices*, J. Algebra**89**(1984), no. 1, 178–223. MR**748233**, 10.1016/0021-8693(84)90240-0**10.**A. Giambruno and M. Zaicev,*On codimension growth of finitely generated associative algebras*, Adv. Math.**140**(1998), no. 2, 145–155. MR**1658530**, 10.1006/aima.1998.1766**11.**A. Giambruno and M. Zaicev,*Exponential codimension growth of PI algebras: an exact estimate*, Adv. Math.**142**(1999), no. 2, 221–243. MR**1680198**, 10.1006/aima.1998.1790**12.**A. Giambruno and M. Zaicev,*A characterization of varieties of associative algebras of exponent two*, Serdica Math. J.**26**(2000), no. 3, 245–252. MR**1803836****13.**A. Giambruno and M. Zaicev,*Minimal varieties of algebras of exponential growth*, Electron. Res. Announc. Amer. Math. Soc.**6**(2000), 40–44 (electronic). MR**1767635**, 10.1090/S1079-6762-00-00078-0**14.**A. Giambruno and M. Zaicev,*Minimal varieties of algebras of exponential growth*, Adv. Math.**174**(2003), 33-42.**15.**Gordon James and Adalbert Kerber,*The representation theory of the symmetric group*, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR**644144****16.**A. R. Kemer,*The Spechtian nature of 𝑇-ideals whose condimensions have power growth*, Sibirsk. Mat. Ž.**19**(1978), no. 1, 54–69, 237 (Russian). MR**0466190****17.**Aleksandr Robertovich Kemer,*Ideals of identities of associative algebras*, Translations of Mathematical Monographs, vol. 87, American Mathematical Society, Providence, RI, 1991. Translated from the Russian by C. W. Kohls. MR**1108620****18.**D. Krakowski and A. Regev,*The polynomial identities of the Grassmann algebra*, Trans. Amer. Math. Soc.**181**(1973), 429–438. MR**0325658**, 10.1090/S0002-9947-1973-0325658-5**19.**V. N. Latyšev,*The complexity of nonmatrix varieties of associative algebras. I, II*, Algebra i Logika**16**(1977), no. 2, 149–183, 184–199, 249–250 (Russian). MR**0552771****20.**Ju. N. Mal′cev,*A basis for the identities of the algebra of upper triangular matrices*, Algebra i Logika**10**(1971), 393–400 (Russian). MR**0304426****21.**S. P. Mishchenko, A. Regev, and M. V. Zaicev,*A characterization of P.I. algebras with bounded multiplicities of the cocharacters*, J. Algebra**219**(1999), no. 1, 356–368. MR**1707676**, 10.1006/jabr.1998.7916**22.**A. P. Popov,*Identities of the tensor square of a Grassmann algebra*, Algebra i Logika**21**(1982), no. 4, 442–471 (Russian). MR**721348****23.**C. Procesi,*Computing with 2×2 matrices*, J. Algebra**87**(1984), no. 2, 342–359. MR**739938**, 10.1016/0021-8693(84)90141-8**24.**Amitai Regev,*Existence of identities in 𝐴⊗𝐵*, Israel J. Math.**11**(1972), 131–152. MR**0314893****25.**Amitai Regev,*Codimensions and trace codimensions of matrices are asymptotically equal*, Israel J. Math.**47**(1984), no. 2-3, 246–250. MR**738172**, 10.1007/BF02760520**26.**A. N. Stoyanova-Venkova,*Some lattices of varieties of associative algebras defined by identities of the fifth degree*, C. R. Acad. Bulgare Sci.**35**(1982), no. 7, 867–868 (Russian). MR**681740**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
16R10,
16P90

Retrieve articles in all journals with MSC (2000): 16R10, 16P90

Additional Information

**Francesca Benanti**

Affiliation:
Dipartimento di Matematica ed Applicazioni, Università di Palermo, via Archirafi 34, 90123 Palermo, Italy

Email:
fbenanti@math.unipa.it

**Antonio Giambruno**

Affiliation:
Dipartimento di Matematica ed Applicazioni, Università di Palermo, via Archirafi 34, 90123 Palermo, Italy

Email:
a.giambruno@unipa.it

**Irina Sviridova**

Affiliation:
Department of Algebra and Geometric Computations, Faculty of Mathematics and Mechanics, Ulyanovsk State University, Ulyanovsk 4327000, Russia

Email:
sviridova_i@rambler.ru

DOI:
https://doi.org/10.1090/S0002-9939-03-07093-X

Keywords:
Polynomial identities,
multiplicities,
codimensions,
growth

Received by editor(s):
March 22, 2002

Received by editor(s) in revised form:
July 31, 2002, and October 30, 2002

Published electronically:
August 13, 2003

Additional Notes:
The first and the second authors were partially supported by MURST of Italy

The third author was partially supported by the scientific program “The Universities of Russia"

Communicated by:
Martin Lorenz

Article copyright:
© Copyright 2003
American Mathematical Society