Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Common Borel directions of a meromorphic function with zero order and its derivative


Author: Tien-Yu Peter Chern
Journal: Proc. Amer. Math. Soc. 132 (2004), 1171-1175
MSC (2000): Primary 30D30
DOI: https://doi.org/10.1090/S0002-9939-03-07195-8
Published electronically: October 2, 2003
MathSciNet review: 2045434
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: There is a meromorphic function of zero order for which the function and its derivative have no common Borel direction.


References [Enhancements On Off] (What's this?)

  • [1] H. H. Chen, Singular directions of meromorphic functions of order zero corresponding to Hayman's inequality (in Chinese), Acta Math. Sinica, 30 (1987), 234-237. MR 88h:30044
  • [2] Chia-tai Chuang, ``Un théorème relatif aux directions de Borel des fonctions méromorphes d'ordre fini, C. R. Acad. Sci. 204 (1937), 951-952.
  • [3] H. Milloux, Sur les directions de Borel des fonctions entières, de leurs dérivées et de leurs intégrales, J. Analyse Math., 1 (1951), 244-330. MR 13:930a
  • [4] A. Rauch, Cas ou une direction de Borel d'une fonction entière $f(z)$ d'ordre finite est aussi direction de Borel pour $f'(z)$, C. R. Acad. Sci., 199 (1934), 1014-1016.
  • [5] J. Rossi, ``A sharp result concerning cercles de remplissage'', Ann. Acad. Sci. Fenn. Ser. A. I. Math., Vol. 20 (1995), 179-185. MR 95k:30062
  • [6] M. Tsuji, Potential Theory in Modern Function Theory, Chelsea Publishing Co., New York, 1975. MR 54:2990
  • [7] G. Valiron,``Recherches sur le théorème de M. Borel dans la théorie des fonctions méromorphes", Acta Math. 52 (1928), 67-92.
  • [8] L. Yang, Value Distribution Theory, Science Press, Beijing, (English edition) Springer-Verlag, Berlin, 1993. MR 95h:30039
  • [9] Guang-Hou Zhang, Common Borel directions of meromorphic functions and their successive derivatives or integrals I. (in Chinese), Acta Math. Sinica, no. 2, 20 (1977), 73-98. MR 80d:30022a

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 30D30

Retrieve articles in all journals with MSC (2000): 30D30


Additional Information

Tien-Yu Peter Chern
Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
Address at time of publication: Department of Applied Mathematics, I-Shou University, Kaohsiung 840, Taiwan
Email: pchern@math.msu.edu, tychern@isu.edu.tw

DOI: https://doi.org/10.1090/S0002-9939-03-07195-8
Keywords: Common Borel direction, zero order
Received by editor(s): May 17, 2002
Received by editor(s) in revised form: December 19, 2002
Published electronically: October 2, 2003
Additional Notes: This paper was supported in part by the NSC R.O.C. under the contract NSC 92-2115-M-214-004, a fund from Academia Sinica (Taipei, Taiwan), and a fund from Michigan State University, U.S.A
Communicated by: Juha M. Heinonen
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society