Minimal polynomials of elements of order in -modular projective representations of alternating groups

Authors:
A. S. Kleshchev and A. E. Zalesski

Journal:
Proc. Amer. Math. Soc. **132** (2004), 1605-1612

MSC (2000):
Primary 20C30; Secondary 20C20, 20D06

DOI:
https://doi.org/10.1090/S0002-9939-03-07242-3

Published electronically:
October 21, 2003

MathSciNet review:
2051120

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be an algebraically closed field of characteristic and let be a quasi-simple group with . We describe the minimal polynomials of elements of order in irreducible representations of over . If , we determine the minimal polynomials of elements of order in -modular irreducible representations of , , , , , and .

**1.**D. Benson,*Spin modules for symmetric groups*, J. London Math. Soc. (2)**38**(1988), 250-262. MR**89k:20020****2.**B. Huppert and N. Blackburn,*Finite groups II*, Grundlehren der mathematischen Wissenschaften, Band 242, Springer-Verlag, Berlin, 1982. MR**84i:20001a****3.**A. Chermak,*Quadratic Pairs*, preprint, 2001.**4.**Ch. Curtis and I. Reiner,*Representation theory of finite groups and associative algebras*, John Wiley and Sons, New York-London, 1962. MR**26:2519****5.**W. Feit,*The representation theory of finite groups*, North-Holland, Amsterdam, 1982. MR**83g:20001****6.**G. D. James,*The Representation Theory of the Symmetric Groups*, Lecture Notes in Mathematics, Vol. 682, Springer-Verlag, Berlin-New York, 1978. MR**80g:20019****7.**A. S. Kleshchev,*Branching rules for modular representations of symmetric groups, II*, J. reine angew. Math.**459**(1995), 163-212. MR**96m:20019b****8.**A. S. Kondratiev and A. E. Zalesski,*Linear groups of degree at most over residue rings modulo*, J. Algebra**240**(2001), 120-142. MR**2002c:20076****9.**C. Jansen, K. Lux, R. A. Parker, and R. A. Wilson,*An atlas of Brauer characters*, The Clarendon Press, Oxford University Press, New York, 1995. MR**96k:20016****10.**S. D. Smith,*Irreducible modules and parabolic subgroups*, J. Algebra**75**(1982), 286-289. MR**83g:20043****11.**D. Wales,*Some projective representations of*, J. Algebra**61**(1979), 37-57. MR**81f:20015****12.**A. E. Zalesski,*Minimal polynomials and eigenvalues of -elements in representations of quasi-simple groups with a cyclic Sylow -subgroup*, J. London Math. Soc. (2)**59**(1999), 845-866. MR**2001a:20018****13.**A. E. Zalesski,*Eigenvalues of prime-order elements in projective representations of alternating groups*, Vestsi Akad. Navuk Belarusi, ser. Fiz.-Mat-Inform. (1996), no. 3, 41-43 (in Russian). MR**98b:20017**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
20C30,
20C20,
20D06

Retrieve articles in all journals with MSC (2000): 20C30, 20C20, 20D06

Additional Information

**A. S. Kleshchev**

Affiliation:
Department of Mathematics, University of Oregon, Eugene, Oregon 97403

Email:
klesh@math.uoregon.edu

**A. E. Zalesski**

Affiliation:
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, England

Email:
a.zalesskii@uea.ac.uk

DOI:
https://doi.org/10.1090/S0002-9939-03-07242-3

Received by editor(s):
November 18, 2002

Received by editor(s) in revised form:
February 19, 2003

Published electronically:
October 21, 2003

Communicated by:
Stephen D. Smith

Article copyright:
© Copyright 2003
American Mathematical Society