Strong limitpoint classification of singular Hamiltonian expressions
Authors:
Jiangang Qi and Shaozhu Chen
Translated by:
Journal:
Proc. Amer. Math. Soc. 132 (2004), 16671674
MSC (2000):
Primary 34B20; Secondary 47B25
Published electronically:
January 7, 2004
MathSciNet review:
2051127
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Strong limitpoint criteria for singular Hamiltonian differential expressions with complex coefficients are obtained. The main results are extensions of the previous results due to Everitt, Giertz, and Weidmann for scalar differential expressions.
 1.
F.
V. Atkinson, Discrete and continuous boundary problems,
Mathematics in Science and Engineering, Vol. 8, Academic Press, New
YorkLondon, 1964. MR 0176141
(31 #416)
 2.
Stephen
L. Clark, A criterion for absolute continuity of the continuous
spectrum of a Hamiltonian system, J. Math. Anal. Appl.
151 (1990), no. 1, 108–128. MR 1069450
(91i:34097), http://dx.doi.org/10.1016/0022247X(90)90245B
 3.
Nelson
Dunford and Jacob
T. Schwartz, Linear operators. Part II: Spectral theory. Self
adjoint operators in Hilbert space, With the assistance of William G.
Bade and Robert G. Bartle, Interscience Publishers John Wiley & Sons\
New YorkLondon, 1963. MR 0188745
(32 #6181)
 4.
W.
N. Everitt, On the limitpoint classification of secondorder
differential operators, J. London Math. Soc. 41
(1966), 531–534. MR 0200519
(34 #410)
 5.
W.
N. Everitt and M.
Giertz, On some properties of the domains of powers of certain
differential operators, Proc. London Math. Soc. (3)
24 (1972), 756–768. MR 0303355
(46 #2492)
 6.
W.
N. Everitt, M.
Giertz, and J.
B. McLeod, On the strong and weak limitpoint classfication of
secondorder differential expressions, Proc. London Math. Soc. (3)
29 (1974), 142–158. MR 0361255
(50 #13701)
 7.
W.
N. Everitt, M.
Giertz, and J.
Weidmann, Some remarks on a separation and limitpoint criterion of
secondorder, ordinary differential expressions, Math. Ann.
200 (1973), 335–346. MR 0326047
(48 #4393)
 8.
W.
N. Everitt, D.
B. Hinton, and J.
S. W. Wong, On the strong limit𝑛 classification of linear
ordinary differential expressions of order 2𝑛, Proc. London
Math. Soc. (3) 29 (1974), 351–367. MR 0409956
(53 #13708)
 9.
Einar
Hille, Lectures on ordinary differential equations,
AddisonWesley Publ. Co., Reading, Mass.LondonDon Mills, Ont., 1969. MR 0249698
(40 #2939)
 10.
D.
B. Hinton and J.
K. Shaw, On boundary value problems for Hamiltonian systems with
two singular points, SIAM J. Math. Anal. 15 (1984),
no. 2, 272–286. MR 731867
(87a:34021), http://dx.doi.org/10.1137/0515022
 11.
D.
B. Hinton and J.
K. Shaw, Absolutely continuous spectra of Dirac systems with long
range, short range and oscillating potentials, Quart. J. Math. Oxford
Ser. (2) 36 (1985), no. 142, 183–213. MR 790479
(87f:34024), http://dx.doi.org/10.1093/qmath/36.2.183
 12.
Roger
A. Horn and Charles
R. Johnson, Matrix analysis, Cambridge University Press,
Cambridge, 1985. MR 832183
(87e:15001)
 13.
Robert
M. Kauffman, Thomas
T. Read, and Anton
Zettl, The deficiency index problem for powers of ordinary
differential expressions, Lecture Notes in Mathematics, Vol. 621,
SpringerVerlag, BerlinNew York, 1977. MR 0481243
(58 #1370)
 14.
Allan
M. Krall, 𝑀(𝜆) theory for singular Hamiltonian
systems with one singular point, SIAM J. Math. Anal.
20 (1989), no. 3, 664–700. MR 990871
(91c:34036), http://dx.doi.org/10.1137/0520047
 15.
Allan
M. Krall, A limitpoint criterion for linear Hamiltonian
systems, Appl. Anal. 61 (1996), no. 12,
115–119. MR 1625457
(99a:34066), http://dx.doi.org/10.1080/00036819608840449
 16.
V. K. Kumar, On the strong limitpoint classification of fourthorder differential expressions with complex coefficients, J. London Math. Soc. (2) 12 (1976), 287298.
 17.
Philip
W. Walker, A vectormatrix formulation for formally symmetric
ordinary differential equations with applications to solutions of
integrable square, J. London Math. Soc. (2) 9
(1974/75), 151–159. MR 0369792
(51 #6021)
 1.
 F. V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press, New York, 1964. MR 31:416
 2.
 S. L. Clark, A criterion for absolute continuity of the continuous spectrum of a Hamilton system, J. Math. Anal. Appl. 151 (1990), 108128. MR 91i:34097
 3.
 N. Dunford and J. T. Schwartz, Linear operators, Part II, Spectral theory: Selfadjoint operators in Hilbert space, Interscience, New York, 1963. MR 32:6181
 4.
 W. N. Everitt, On the limitpoint classification of secondorder differential operators, J. London Math. Soc. 41 (1966), 531534. MR 34:410
 5.
 W. N. Everitt and M. Giertz, On some properties of the domains of powers of certain differential operators, Proc. London Math. Soc. (3) 24 (1972), 756768. MR 46:2492
 6.
 W. N. Everitt, M. Giertz and J. B. McLeod, On the strong and weak limitpoint classification of secondorder differential expressions, Proc. London Math. Soc. (3) 29 (1974), 142158. MR 50:13701
 7.
 W. N. Everitt, M. Giertz, and J. Weidmann, Some remarks on a separation and limitpoint criterion of secondorder, ordinary differential expressions, Math. Ann. 200 (1973), 335346. MR 48:4393
 8.
 W. N. Everitt, D. B. Hinton, and J. S. W. Wong, On the strong limit classification of linear ordinary differential expressions of order , Proc. London Math. Soc. (3) 29 (1974), 351367. MR 53:13708
 9.
 E. Hille, Lectures on Ordinary Differential Equations, AddisonWesley, London, 1969. MR 40:2939
 10.
 D. B. Hinton and J. K. Shaw, On boundary value problems for Hamiltonian systems with two singular points, SIAM. J. Math. Anal. 15 (1984), 272286. MR 87a:34021
 11.
 D. B. Hinton and J. K. Shaw, Absolutely continuous spectra of Dirac systems with long range, short range and oscillating potentials, Quart. J. Math. Oxford Ser. (2) 36 (1985), 183213. MR 87f:34024
 12.
 R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985. MR 87e:15001
 13.
 R. M. Kauffman, T. T. Read, and A. Zettl, The deficiency index problem for powers of ordinary differential expressions, Lecture Notes in Math., vol. 621, SpringerVerlag, Berlin, 1977. MR 58:1370
 14.
 A. M. Krall, theory for singular Hamiltonian systems with one singular point, SIAM J. Math. Anal. 20 (1989), 664700. MR 91c:34036
 15.
 A. M. Krall, A limitpoint criterion for linear Hamiltonian systems, Applicable Analysis 61 (1996), 115119. MR 99a:34066
 16.
 V. K. Kumar, On the strong limitpoint classification of fourthorder differential expressions with complex coefficients, J. London Math. Soc. (2) 12 (1976), 287298.
 17.
 P. W. Walker, A vectormatrix formulation for formally symmetric ordinary differential equations with applications to solutions of integrable square, J. London Math. Soc. (2) 9 (1974/75), 151159. MR 51:6021
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
34B20,
47B25
Retrieve articles in all journals
with MSC (2000):
34B20,
47B25
Additional Information
Jiangang Qi
Affiliation:
Department of Mathematics, Ningbo University, Ningbo, Zhejiang 315211, People’s Republic of China
Email:
qwljg01@sohu.com
Shaozhu Chen
Affiliation:
Department of Mathematics, Shandong University, Jinan, Shandong 250100, People’s Republic of China
Email:
szchen@sdu.edu.cn
DOI:
http://dx.doi.org/10.1090/S0002993904070376
PII:
S 00029939(04)070376
Keywords:
Hamiltonian system,
deficiency index,
strong limitpoint case
Received by editor(s):
January 30, 2002
Received by editor(s) in revised form:
September 6, 2002, and September 15, 2002
Published electronically:
January 7, 2004
Additional Notes:
This project was supported by the NSF of China under Grant 10071043
Communicated by:
Carmen C. Chicone
Article copyright:
© Copyright 2004
American Mathematical Society
