Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Moment generating function of the reciprocal of an integral of geometric Brownian motion


Author: Kyounghee Kim
Journal: Proc. Amer. Math. Soc. 132 (2004), 2753-2759
MSC (2000): Primary 60J65; Secondary 60G35
DOI: https://doi.org/10.1090/S0002-9939-04-07449-0
Published electronically: April 21, 2004
MathSciNet review: 2054802
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we obtain a simple, explicit integral form for the moment generating function of the reciprocal of the random variable defined by $ A^{(\nu)}_t := \int ^t _0 \exp (2B_s + 2 \nu s) ds $, where $B_s$, $s>0$, is a one-dimensional Brownian motion starting from 0. In case $\nu = 1 $, the moment generating function has a particularly simple form.


References [Enhancements On Off] (What's this?)

  • 1. R. Bhattacharya, E. Thomann, E. Waymire (2001): A note on the distribution of integrals of geometric Brownian motion, Statist. Probab. Lett. 55, 187-192. MR 2002j:60147
  • 2. P. Bougerol (1983): Exemples de théorèmes locaux sur les groups résolubles, Ann. Inst. H. Poincaré Sect. B (N.S.) 19, 369-391. MR 84g:60013
  • 3. H. Geman, M. Yor (1993): Bessel processes, Asian options and perpetuities, Math. Finance 3, 349-375.
  • 4. V.W. Goodman, K. Kim (2002) : Interest Rate Derivatives within A non-explosive Log Normal Bond Model, working paper
  • 5. L.C.G. Rogers and Z. Shi (1995): The value of an Asian option, J. Appl. Probab. 32, 1077-1088. MR 96j:90017
  • 6. M. Yor (1992): On some exponential functionals of Brownian motion, Adv. in Appl. Probab.24, 509-531. MR 94b:60095

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 60J65, 60G35

Retrieve articles in all journals with MSC (2000): 60J65, 60G35


Additional Information

Kyounghee Kim
Affiliation: Department of Mathematics, Syracuse University, Syracuse, New York 13244
Email: kkim26@syr.edu

DOI: https://doi.org/10.1090/S0002-9939-04-07449-0
Keywords: Geometric Brownian motion, Asian options, moment generating functions
Received by editor(s): December 13, 2002
Received by editor(s) in revised form: July 18, 2003
Published electronically: April 21, 2004
Communicated by: Richard C. Bradley
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society