Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Polynomials generated by linear operators


Authors: P. Galindo, M. L. Lourenço and L. A. Moraes
Journal: Proc. Amer. Math. Soc. 132 (2004), 2917-2927
MSC (2000): Primary 46G20
DOI: https://doi.org/10.1090/S0002-9939-04-07442-8
Published electronically: June 2, 2004
MathSciNet review: 2063111
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the class of Banach algebra-valued $n$-homogeneous polynomials generated by the $n^{th}$ powers of linear operators. We compare it with the finite type polynomials. We introduce a topology $w_{EF}$ on $E,$ similar to the weak topology, to clarify the features of these polynomials.


References [Enhancements On Off] (What's this?)

  • 1. R.M. Aron and P. Berner, A Hahn-Banach theorem for analytic mappings, Bull. Soc. Math. France 106 (1978), 3-24. MR 80e:46029
  • 2. R.M. Aron, B.J. Cole and T.W. Gamelin, Weak-star continuous analytic functions, Canad. J. Math. 47 (4) (1995), 673-683. MR 96d:46060
  • 3. R.M. Aron and M. Schottenloher, Compact holomorphic mappings on Banach spaces and the approximation property, J. Functional Anal. 21 (1976), 7-30. MR 53:6323
  • 4. N. Bourbaki, Éléments de mathématique. Topologie Générale, Hermann, Paris (1971). MR 50:11111
  • 5. J. Duncan and S.A.R. Hosseinium,The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh 84A (1979), 309-325. MR 81f:46057
  • 6. S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer (1999). MR 2001a:46043
  • 7. N. Dunford and J. Schwartz, Linear Operators, Part I, Interscience (1958). MR 22:8302
  • 8. M. González and J. Gutiérrez, Polynomial Grothendieck properties, Glasgow Math. J. 37 (1995), 211-219. MR 96h:46025
  • 9. M. González and J. Gutiérrez, The compact weak topology on a Banach space, Proc. Roy. Soc. Edinburgh 120A (1992), 367-379. MR 93c:46022
  • 10. J. Gómez, On local convexity of bounded weak topologies on Banach spaces, Pacific J. Math. 110 (1984), 71-76. MR 85a:46014
  • 11. J. R. Holub, Reflexivity of $L(E,F),$ Proc. Amer. Math. Soc. 39 (1) (1973), 175-177. MR 47:3956
  • 12. M. L. Lourenço and L. A. Moraes, A class of polynomials from Banach spaces into Banach algebras, Publ. Res. Inst. Math. Sci., Kyoto Univ. 37 (2001), 521-529. MR 2002k:46110
  • 13. J. Mujica, Reflexive spaces of homogeneous polynomials, Bull. Polish Acad. of Sci. 49 (3) (2001), 211-222. MR 2002i:46019
  • 14. R. Ryan, Weakly compact holomorphic mappings on Banach spaces, Pacific J. Math. 131 (1988), 179-190 MR 89a:46103

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46G20

Retrieve articles in all journals with MSC (2000): 46G20


Additional Information

P. Galindo
Affiliation: Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Valencia 46.100, Burjasot-Valencia, Spain
Email: Pablo.Galindo@uv.es

M. L. Lourenço
Affiliation: Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281 - CEP : 05315-970, São Paulo, Brazil
Email: mllouren@ime.usp.br

L. A. Moraes
Affiliation: Instituto de Matemática, Universidade Federal do Rio de Janeiro, CP 68530 - CEP: 21945-970, Rio de Janeiro, Brazil
Email: luiza@im.ufrj.br

DOI: https://doi.org/10.1090/S0002-9939-04-07442-8
Keywords: $n$-homogeneous polynomials, linear operator, Arens product
Received by editor(s): September 4, 2002
Published electronically: June 2, 2004
Additional Notes: The first author was supported by CCInt-USP and FAPEMIG
The second author was supported in part by agreement USP/UV and FAPESP
The third author was supported in part by CNPq, Research Grant 300016/82-4 and PROAP/UFRJ
Communicated by: Jonathan M. Borwein
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society