Jacobi polynomials from compatibility conditions

Authors:
Yang Chen and Mourad Ismail

Journal:
Proc. Amer. Math. Soc. **133** (2005), 465-472

MSC (2000):
Primary 33C45; Secondary 42C05

Published electronically:
August 30, 2004

MathSciNet review:
2093069

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We revisit the ladder operators for orthogonal polynomials and re-interpret two supplementary conditions as compatibility conditions of two linear over-determined systems; one involves the variation of the polynomials with respect to the variable (spectral parameter) and the other a recurrence relation in (the lattice variable). For the Jacobi weight

we show how to use the compatibility conditions to explicitly determine the recurrence coefficients of the monic Jacobi polynomials.

**1.**N. I. Akhiezer,*The classical moment problem and some related questions in analysis*, Translated by N. Kemmer, Hafner Publishing Co., New York, 1965. MR**0184042****2.**George E. Andrews, Richard Askey, and Ranjan Roy,*Special functions*, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR**1688958****3.**William C. Bauldry,*Estimates of asymmetric Freud polynomials on the real line*, J. Approx. Theory**63**(1990), no. 2, 225–237. MR**1079852**, 10.1016/0021-9045(90)90105-Y**4.**Stanford S. Bonan and Dean S. Clark,*Estimates of the Hermite and the Freud polynomials*, J. Approx. Theory**63**(1990), no. 2, 210–224. MR**1079851**, 10.1016/0021-9045(90)90104-X**5.**S. Bonan, D. S. Lubinsky, and P. Nevai, Derivatives of Orthogonal Polynomials and characterization of weights, in ``*Approximation Theory*5,'' Academic Press, New York, 1986, pp. 271-274.**6.**S. Bonan, D. S. Lubinsky, and P. Nevai,*Orthogonal polynomials and their derivatives. II*, SIAM J. Math. Anal.**18**(1987), no. 4, 1163–1176. MR**892495**, 10.1137/0518085**7.**Yang Chen and Mourad E. H. Ismail,*Ladder operators and differential equations for orthogonal polynomials*, J. Phys. A**30**(1997), no. 22, 7817–7829. MR**1616931**, 10.1088/0305-4470/30/22/020**8.**Mourad E. H. Ismail,*An extremal problem for generalized Jacobi polynomials*, Proceedings of the Mathematics Conference (Birzeit/Nablus, 1998) World Sci. Publ., River Edge, NJ, 2000, pp. 139–145. MR**1773025****9.**Mourad E. H. Ismail and Jet Wimp,*On differential equations for orthogonal polynomials*, Methods Appl. Anal.**5**(1998), no. 4, 439–452. MR**1669843**, 10.4310/MAA.1998.v5.n4.a8**10.**H. N. Mhaskar,*Bounds for certain Freud-type orthogonal polynomials*, J. Approx. Theory**63**(1990), no. 2, 238–254. MR**1079853**, 10.1016/0021-9045(90)90106-Z**11.**Paul Nevai,*Géza Freud, orthogonal polynomials and Christoffel functions. A case study*, J. Approx. Theory**48**(1986), no. 1, 167. MR**862231**, 10.1016/0021-9045(86)90016-X**12.**Earl D. Rainville,*Special functions*, 1st ed., Chelsea Publishing Co., Bronx, N.Y., 1971. MR**0393590****13.**J. A. Shohat and J. D. Tamarkin,*The Problem of Moments*, American Mathematical Society Mathematical surveys, vol. I, American Mathematical Society, New York, 1943. MR**0008438****14.**Gábor Szegő,*Orthogonal polynomials*, 4th ed., American Mathematical Society, Providence, R.I., 1975. American Mathematical Society, Colloquium Publications, Vol. XXIII. MR**0372517**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
33C45,
42C05

Retrieve articles in all journals with MSC (2000): 33C45, 42C05

Additional Information

**Yang Chen**

Affiliation:
Department of Mathematics, Imperial College, 180 Queen’s Gate, London SW7 2BZ, United Kingdom

Email:
y.chen@imperial.ac.uk

**Mourad Ismail**

Affiliation:
Department of Mathematics, University of Central Florida, Orlando, Florida 32816

Email:
ismail@math.ucf.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-04-07566-5

Received by editor(s):
February 21, 2003

Received by editor(s) in revised form:
October 2, 2003

Published electronically:
August 30, 2004

Additional Notes:
This research was supported by NSF grant DMS 99-70865 and by EPSRC grant GR/S14108.

Communicated by:
David R. Larson

Article copyright:
© Copyright 2004
American Mathematical Society