Examples concerning heredity problems of WCG Banach spaces

Authors:
Spiros A. Argyros and Sophocles Mercourakis

Journal:
Proc. Amer. Math. Soc. **133** (2005), 773-785

MSC (2000):
Primary 46B20, 46B26, 03E05

Published electronically:
August 20, 2004

MathSciNet review:
2113927

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present two examples of WCG spaces that are not hereditarily WCG. The first is a space with an unconditional basis, and the second is a space such that is WCG and does not contain . The non-WCG subspace of has the additional property that is not WCG and is reflexive.

**[A]**S.A. Argyros,*Weakly Lindelöf Determined Banach spaces not containing*, (1993), preprint.**[ACGJM]**Spiros A. Argyros, Jesús F. Castillo, Antonio S. Granero, Mar Jiménez, and José P. Moreno,*Complementation and embeddings of 𝑐₀(𝐼) in Banach spaces*, Proc. London Math. Soc. (3)**85**(2002), no. 3, 742–768. MR**1936819**, 10.1112/S0024611502013618**[AL]**D. Amir and J. Lindenstrauss,*The structure of weakly compact sets in Banach spaces*, Ann. of Math. (2)**88**(1968), 35–46. MR**0228983****[AM]**S. Argyros and S. Mercourakis,*On weakly Lindelöf Banach spaces*, Rocky Mountain J. Math.**23**(1993), no. 2, 395–446. MR**1226181**, 10.1216/rmjm/1181072569**[F]**Marián J. Fabian,*Gâteaux differentiability of convex functions and topology*, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1997. Weak Asplund spaces; A Wiley-Interscience Publication. MR**1461271****[F1]**M. Fabián,*Each weakly countably determined Asplund space admits a Fréchet differentiable norm*, Bull. Austral. Math. Soc.**36**(1987), no. 3, 367–374. MR**923819**, 10.1017/S000497270000366X**[H]**Richard Haydon,*Some more characterizations of Banach spaces containing 𝑙₁*, Math. Proc. Cambridge Philos. Soc.**80**(1976), no. 2, 269–276. MR**0423047****[HHZ]**P. Habala, P. Hajek, and V. Zizler,*Introduction to Banach Spaces I, II**Matfyzpress*, Prague (1996).**[HO]**J. Hagler and E. Odell,*A Banach space not containing 𝑙₁ whose dual ball is not weak* sequentially compact*, Illinois J. Math.**22**(1978), no. 2, 290–294. MR**0482087****[J]**Robert C. James,*A separable somewhat reflexive Banach space with nonseparable dual*, Bull. Amer. Math. Soc.**80**(1974), 738–743. MR**0417763**, 10.1090/S0002-9904-1974-13580-9**[JL]**W. B. Johnson and J. Lindenstrauss,*Some remarks on weakly compactly generated Banach spaces*, Israel J. Math.**17**(1974), 219–230. MR**0417760****[JZ]**K. John and V. Zizler,*Smoothness and its equivalents in weakly compactly generated Banach spaces*, J. Functional Analysis**15**(1974), 1–11. MR**0417759****[LS]**J. Lindenstrauss and C. Stegall,*Examples of separable spaces which do not contain ℓ₁ and whose duals are non-separable*, Studia Math.**54**(1975), no. 1, 81–105. MR**0390720****[MS]**S. Mercourakis and E. Stamati,*A new class of weakly**-analytic Banach spaces*,*Mathematika*(to appear).**[R]**Haskell P. Rosenthal,*The heredity problem for weakly compactly generated Banach spaces*, Compositio Math.**28**(1974), 83–111. MR**0417762****[T]**Michel Talagrand,*Espaces de Banach faiblement \cal𝐾-analytiques*, Ann. of Math. (2)**110**(1979), no. 3, 407–438 (French). MR**554378**, 10.2307/1971232**[Z]**V. Zizler,*Nonseparable Banach Spaces*,*Handbook of the Geometry of Banach spaces*W.B. Johnson, J. Lindenstrauss (eds.), North-Holland, Vol. 2, ch. 41, (2003), 1743-1816.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
46B20,
46B26,
03E05

Retrieve articles in all journals with MSC (2000): 46B20, 46B26, 03E05

Additional Information

**Spiros A. Argyros**

Affiliation:
Department of Mathematics, National Technical University of Athens, Athens 15780, Greece

Email:
sargyros@math.ntua.gr

**Sophocles Mercourakis**

Affiliation:
Department of Mathematics, University of Athens, Athens 15784, Greece

Email:
smercour@math.uoa.gr

DOI:
http://dx.doi.org/10.1090/S0002-9939-04-07532-X

Keywords:
WCG Banach space,
unconditional basis,
tree

Received by editor(s):
July 16, 2003

Received by editor(s) in revised form:
October 23, 2003

Published electronically:
August 20, 2004

Communicated by:
N. Tomczak-Jaegermann

Article copyright:
© Copyright 2004
American Mathematical Society