Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Fefferman-Stein type inequality for the Kakeya maximal operator in Wolff's range


Author: Hitoshi Tanaka
Journal: Proc. Amer. Math. Soc. 133 (2005), 763-772
MSC (2000): Primary 42B25
DOI: https://doi.org/10.1090/S0002-9939-04-07623-3
Published electronically: August 20, 2004
MathSciNet review: 2113926
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $K_\delta$, $0<\delta\ll 1$, be the Kakeya (Nikodým) maximal operator defined as the supremum of averages over tubes of eccentricity $\delta$. The (so-called) Fefferman-Stein type inequality:

\begin{displaymath}\Vert K_\delta f\Vert _{L^p(\mathbf{R}^d,w)} \le C (1/\delta)... ...1/\delta))^\alpha \Vert f\Vert _{L^p(\mathbf{R}^d,K_\delta w)} \end{displaymath}

is shown in the range $1<p\le(d+2)/2$, where $C$ and $\alpha$ are some constants depending only on $p$ and the dimension $d$ and $w$ is a weight. The result is a sharp bound up to $\log(1/\delta)$-factors.


References [Enhancements On Off] (What's this?)

  • 1. A. Córdoba, The Kakeya maximal function and the spherical summation multiplier, Amer. J. Math., 99(1977), 1-22. MR 56:6259
  • 2. D. Müller and F. Soria, A double-weight $L^2$ inequality for the Kakeya maximal function, Fourier Anal. Appl., Kahane Special Issue (1995), 467-478. MR 96k:42026
  • 3. C. Sogge, Concerning Nikodým-type sets in $3$-dimensional curved spaces, J. Amer. Math. Soc., 12(1999), 1-31. MR 99h:42037
  • 4. T. Tao, From rotating needles to stability of waves: emerging connections between combinatorics, analysis, and PDE, Notices Amer. Math. Soc. 48(2001), no3, 294-303. MR 2002b:42021
  • 5. H. Tanaka, Some weighted inequalities for the Kakeya maximal operator on functions of product type, J. Math. Sci. Univ. Tokyo, 6(1999), 315-333. MR 2001e:42029a
  • 6. H. Tanaka, A weighted inequality for the Kakeya maximal operator with a special base, Tokyo J. Math., 23(2000), 255-267. MR 2002g:42027
  • 7. H. Tanaka, The Fefferman-Stein type inequality for the Kakeya maximal operator, Proc. Amer. Math. Soc., 129(2001), 2373-2378. MR 2002e:42024
  • 8. H. Tanaka, The Fefferman-Stein type inequality for the Kakeya maximal operator II, Acta Mathematica Sinica, English Series, 18(2002) no3, 447-454. MR 2003j:42026
  • 9. T. Tao, A. Vargas, L. Vega, A bilinear approach to the restriction and Kakeya conjectures, J. Amer. Math. Soc., 11(1998), 967-1000. MR 99f:42026
  • 10. A. M. Vargas, A weighted inequality for the Kakeya maximal operator, Proc. Amer. Math. Soc., 120(1994), 1101-1105. MR 94f:42023
  • 11. T. Wolff, An improved bound for Kakeya type maximal functions, Rev. Mat. Iberoamericana, 11(1995), 651-674. MR 96m:42034
  • 12. T. Wolff, Recent work connected with the Kakeya problem, Prospects in Mathematics (Princeton, NJ, 1996), 129-162, Amer. Math. Soc., Providence, RI, 1999.MR 2000d:42010

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42B25

Retrieve articles in all journals with MSC (2000): 42B25


Additional Information

Hitoshi Tanaka
Affiliation: Department of Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Tokyo 153-8914, Japan
Email: htanaka@ms.u-tokyo.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-04-07623-3
Received by editor(s): October 22, 2003
Published electronically: August 20, 2004
Additional Notes: This work was supported by the Fūjyukai Foundation.
Communicated by: Andreas Seeger
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society