Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A $q$-sampling theorem related to the $q$-Hankel transform


Author: L. D. Abreu
Journal: Proc. Amer. Math. Soc. 133 (2005), 1197-1203
MSC (2000): Primary 33D15, 33D05; Secondary 94A20
DOI: https://doi.org/10.1090/S0002-9939-04-07589-6
Published electronically: October 14, 2004
MathSciNet review: 2117222
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A $q$-version of the sampling theorem is derived using the $q$-Hankel transform introduced by Koornwinder and Swarttouw. The sampling points are the zeros of the third Jackson $q$-Bessel function.


References [Enhancements On Off] (What's this?)

  • 1. L. D. Abreu, J. Bustoz, Complete sets of q-Bessel functions, to appear in ``Theory and Applications of Special Functions. A volume dedicated to Mizan Rahman'', (eds. M. E. H. Ismail and E. Koelink), Developments in Mathematics, Kluwer Acad. Publ.
  • 2. L. D. Abreu, J. Bustoz, J. L. Cardoso, The roots of the third Jackson q-Bessel function, Internat. J. Math. Math. Sci. 67, (2003), 4241-4248.
  • 3. G. Gasper and M. Rahman, ``Basic Hypergeometric Series,'' Cambridge University Press, Cambridge, UK, 1990. MR 91d:33034
  • 4. G. H. Hardy, Notes on special systems of orthogonal functions IV, Proc. Cambridge Phil. Soc., 37 (1941), 331-348. MR 3:108b
  • 5. J. R. Higgins, An interpolation series associated with the Bessel-Hankel transform, J. Lond. Math. Soc. 5, (1972) 707-714. MR 47:9152
  • 6. M. E. H. Ismail, The Zeros of Basic Bessel functions, the functions ${J}_{\nu +ax}(x)$, and associated orthogonal polynomials, J. Math. Anal. Appl. 86 (1982), 1-19. MR 83c:33010
  • 7. H. T. Koelink, R. F. Swarttouw, On the zeros of the Hahn-Exton q-Bessel function and associated q-Lommel polynomials, J. Math. Anal. Appl. 186, (1994), 690-710. MR 95j:33050
  • 8. T. H. Koornwinder, R. F. Swarttouw, On q-analogues of the Fourier and Hankel transforms. Trans. Amer. Math. Soc. 333 (1992), no. 1, 445-461. MR 92k:33013
  • 9. A. A. Kvitsinsky, Spectral zeta functions for q-Bessel equations, J. Phys. A: Math. Gen. 28, 1753-1764 (1995), no. 6. MR 96f:58181
  • 10. L. Máté, ``Hilbert space methods in science and engineering''. Adam Hilger, Ltd., Bristol, 1989.MR 92e:46002

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 33D15, 33D05, 94A20

Retrieve articles in all journals with MSC (2000): 33D15, 33D05, 94A20


Additional Information

L. D. Abreu
Affiliation: Department of Mathematics, Universidade de Coimbra, Portugal
Email: daniel@mat.uc.pt.

DOI: https://doi.org/10.1090/S0002-9939-04-07589-6
Keywords: Sampling theorem, reproducing kernel, $q$-Bessel functions, $q$-Hankel transform
Received by editor(s): November 21, 2003
Received by editor(s) in revised form: December 12, 2003
Published electronically: October 14, 2004
Additional Notes: Partial financial assistance by Fundação para a Ciência e Tecnologia and Centro de Matemática da Universidade de Coimbra
Communicated by: Carmen C. Chicone
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society