Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Detecting the index of a subgroup in the subgroup lattice


Authors: M. De Falco, F. de Giovanni, C. Musella and R. Schmidt
Journal: Proc. Amer. Math. Soc. 133 (2005), 979-985
MSC (2000): Primary 20E15
Published electronically: September 16, 2004
MathSciNet review: 2117197
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A theorem by Zacher and Rips states that the finiteness of the index of a subgroup can be described in terms of purely lattice-theoretic concepts. On the other hand, it is clear that if $G$ is a group and $H$ is a subgroup of finite index of $G$, the index $\vert G:H\vert$ cannot be recognized in the lattice ${\mathfrak{L}}(G)$ of all subgroups of $G$, as for instance all groups of prime order have isomorphic subgroup lattices. The aim of this paper is to give a lattice-theoretic characterization of the number of prime factors (with multiplicity) of $\vert G:H\vert$.


References [Enhancements On Off] (What's this?)

  • 1. Emma Previato, Gruppi in cui la relazione di Dedekind è transitiva, Rend. Sem. Mat. Univ. Padova 54 (1975), 215–229 (1976) (Italian). MR 0466319
  • 2. Derek J. S. Robinson, A course in the theory of groups, Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1993. MR 1261639
  • 3. Roland Schmidt, Verbandstheoretische Charakterisierungen der Endlichkeit des Indexes einer Untergruppe in einer Gruppe, Arch. Math. (Basel) 42 (1984), no. 6, 492–495 (German). MR 756887, 10.1007/BF01194043
  • 4. Roland Schmidt, Subgroup lattices of groups, de Gruyter Expositions in Mathematics, vol. 14, Walter de Gruyter & Co., Berlin, 1994. MR 1292462
  • 5. Giovanni Zacher, A lattice characterization of the finiteness of the index of a subgroup in a group, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 69 (1980), no. 6, 317–323 (1982) (Italian, with English summary). MR 690298

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 20E15

Retrieve articles in all journals with MSC (2000): 20E15


Additional Information

M. De Falco
Affiliation: Dipartimento di Matematica e Applicazioni, Università di Napoli “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia, I - 80126 Napoli, Italy
Email: mdefalco@unina.it

F. de Giovanni
Affiliation: Dipartimento di Matematica e Applicazioni, Università di Napoli “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia, I - 80126 Napoli, Italy
Email: degiovan@unina.it

C. Musella
Affiliation: Dipartimento di Matematica e Applicazioni, Università di Napoli “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia, I - 80126 Napoli, Italy
Email: cmusella@unina.it

R. Schmidt
Affiliation: Mathematisches Seminar, Universität Kiel, Ludwig-Meyn Straße 4, D - 24098 Kiel, Germany
Email: schmidt@math.uni-kiel.de

DOI: http://dx.doi.org/10.1090/S0002-9939-04-07638-5
Received by editor(s): October 8, 2003
Received by editor(s) in revised form: December 1, 2003
Published electronically: September 16, 2004
Communicated by: Jonathan I. Hall
Article copyright: © Copyright 2004 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.