Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Subnormal semigroups of composition operators

Author: José Giménez
Journal: Proc. Amer. Math. Soc. 133 (2005), 1749-1756
MSC (2000): Primary 47B33; Secondary 47A13, 47B20
Published electronically: December 31, 2004
MathSciNet review: 2120274
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we describe a model for subnormal semigroups of composition operators (with linear fractional symbol) acting on the Hardy space $H^2$. We also discuss cyclicity of such semigroups in the context of more general results studied by J. H. Shapiro and P. S. Bourdon.

References [Enhancements On Off] (What's this?)

  • 1. N. Aronszajn, Theory of reproducing Kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404. MR 0051437 (14:479c)
  • 2. E. Berkson and H. Porta, Semigroups of analytic functions and composition operators, Michigan Math. J. 25 (1978), 101-115. MR 0480965 (58:1112)
  • 3. P. S. Bourdon and J. H. Shapiro, Cyclic Phenomena for Composition Operators, Memoirs of the American Mathematical Society, 1997. MR 1396955 (97h:47023)
  • 4. C. C. Cowen, Linear fractional composition operators on $ H^2 $, Integral Equations and Operator Theory 11 (1988), 151-160. MR 0928479 (89b:47044)
  • 5. C. C. Cowen, and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, New York, 1994. MR 1397026 (97i:47056)
  • 6. C. C. Cowen, and T. L. Kriete, Subnormality and composition operators on $ H^2 $, J. Functional Analysis 81 (1988), 298-319. MR 0971882 (90c:47055)
  • 7. R. Curto, P. Muhly and J. Xia, Hyponormal pairs of commuting operators, Operator Theory: Advances and Applications, Vol. 35, Birkhäuser Verlag, Basel (1988), 1-21. MR 1017663 (90m:47037)
  • 8. F. Jafary, B. D. MacCluer, C. C. Cowen and D. Porter, Studies on Composition Operators, Memoirs of the American Mathematical Society, 1997. MR 1601044 (98h:47005)
  • 9. R. Frankfurt, Quasicyclic subnormal semigroups, Canadian Journal of Mathematics, vol XXIX, 6, (1977), 1230-1246. MR 0463971 (57:3909)
  • 10. J. Giménez, Joint hyponormality of composition operators with linear fractional symbols, Integral Equations and Operator Theory 43 (2002), 385-396. MR 1909372 (2003e:47049)
  • 11. J. Giménez, Joint spectrum of subnormal n-tuples of composition operators, Proc. Amer. Math. Soc. 130 (2001), 2015-2023. MR 1896036 (2003b:47045)
  • 12. T. Itô, On the commutative family of subnormal operators, J. Fac Sci. Hokkaido University, 14 (1958), 1-15. MR 0107177 (21:5902)
  • 13. K-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math., 194, Springer-Verlag, 2000. MR 1721989 (2000i:47075)
  • 14. A. I. Plesner, Spectral Theory of Linear Operators, Vol II, Frederick Ungar Publishing Co., New York, 1969. MR 0244792 (39:6106)
  • 15. J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York, 1993. MR 1237406 (94k:47049)
  • 16. A. G. Siskakis, Semigroups of composition operators on spaces of analytic functions, a review, Studies on Composition Operators, Contemporary Math, AMS, 213, 1988, 229-252. MR 1601120 (98m:47049)
  • 17. B. Sz.-Nagy, Spektraldarstellung linearer transformationen des Hilbertschen raumes, Ergebnisse der Mathematik, Springer-Verlag, 1967. MR 0213890 (35:4744)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47B33, 47A13, 47B20

Retrieve articles in all journals with MSC (2000): 47B33, 47A13, 47B20

Additional Information

José Giménez
Affiliation: Departamento de Matemáticas, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela

Received by editor(s): November 8, 2002
Received by editor(s) in revised form: February 17, 2004
Published electronically: December 31, 2004
Additional Notes: This paper is based on some parts of the author’s doctoral dissertation at the University of Iowa, written under the supervision of Professor Raúl Curto. The author has been partially supported by C.D.C.H.T. of the Universidad de Los Andes, project C - 1081-01- 05 - B
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society