Relations approximated by continuous functions

Authors:
L'. Holá and R. A. McCoy

Journal:
Proc. Amer. Math. Soc. **133** (2005), 2173-2182

MSC (2000):
Primary 54C35, 54B20, 54C08

Published electronically:
February 15, 2005

MathSciNet review:
2137885

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a Tychonoff space, let be the space of all continuous real-valued functions defined on and let be the hyperspace of all nonempty closed subsets of . We prove the following result. Let be a locally connected, countably paracompact, normal -space without isolated points, and let . Then is in the closure of in with the locally finite topology if and only if is the graph of a cusco map. Some results concerning an approximation in the Vietoris topology are also given.

**[Be1]**Gerald Beer,*Topologies on closed and closed convex sets*, Mathematics and its Applications, vol. 268, Kluwer Academic Publishers Group, Dordrecht, 1993. MR**1269778****[Be2]**Gerald Beer,*The approximation of real functions in the Hausdorff metric*, Houston J. Math.**10**(1984), no. 3, 325–338. MR**763235****[Be3]**Gerald Beer,*On functions that approximate relations*, Proc. Amer. Math. Soc.**88**(1983), no. 4, 643–647. MR**702292**, 10.1090/S0002-9939-1983-0702292-8**[Be4]**Gerald Beer,*On a theorem of Cellina for set valued functions*, Rocky Mountain J. Math.**18**(1988), no. 1, 37–47. MR**935726**, 10.1216/RMJ-1988-18-1-37**[BHPV]**G. A. Beer, C. J. Himmelberg, K. Prikry, and F. S. Van Vleck,*The locally finite topology on 2^{𝑋}*, Proc. Amer. Math. Soc.**101**(1987), no. 1, 168–172. MR**897090**, 10.1090/S0002-9939-1987-0897090-2**[Bo]**J. M. Borwein,*Minimal CUSCOS and subgradients of Lipschitz functions*, Fixed point theory and applications (Marseille, 1989) Pitman Res. Notes Math. Ser., vol. 252, Longman Sci. Tech., Harlow, 1991, pp. 57–81 (English, with French summary). MR**1122818****[Ce]**Arrigo Cellina,*A further result on the approximation of set-valued mappings*, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8)**48**(1970), 412–416 (English, with Italian summary). MR**0276935****[DB]**F. S. De Blasi,*Characterizations of certain classes of semicontinuous multifunctions by continuous approximations*, J. Math. Anal. Appl.**106**(1985), no. 1, 1–18. MR**780314**, 10.1016/0022-247X(85)90126-X**[DBM]**F. S. De Blasi and J. Myjak,*On continuous approximations for multifunctions*, Pacific J. Math.**123**(1986), no. 1, 9–31. MR**834135****[DHP]**G. Di Maio, Ľ. Holá, and J. Pelant,*Properties related to the first countability of hyperspace topologies*, Questions Answers Gen. Topology**19**(2001), no. 1, 139–157. MR**1815355****[Ch]**Jens Peter Reus Christensen,*Theorems of Namioka and R. E. Johnson type for upper semicontinuous and compact valued set-valued mappings*, Proc. Amer. Math. Soc.**86**(1982), no. 4, 649–655. MR**674099**, 10.1090/S0002-9939-1982-0674099-0**[En]**R. Engelking,*General Topology*, Helderman, Berlin, 1989.**[Ho1]**\soft{L}. Holá,*On relations approximated by continuous functions*, Acta Univ. Carolin. Math. Phys.**28**(1987), no. 2, 67–72. 15th winter school in abstract analysis (Srní, 1987). MR**932741****[Ho2]**\soft{L}ubica Holá,*Hausdorff metric on the space of upper semicontinuous multifunctions*, Rocky Mountain J. Math.**22**(1992), no. 2, 601–610. MR**1180723**, 10.1216/rmjm/1181072752**[Hu]**Masuo Hukuhara,*Sur l’application semi-continue dont la valeur est un compact convexe*, Funkcial. Ekvac.**10**(1967), 43–66 (French). MR**0222856****[Mc]**R. A. McCoy,*Densely continuous forms in Vietoris hyperspaces*, Set-Valued Anal.**8**(2000), no. 3, 267–271. MR**1790485**, 10.1023/A:1008773312587**[MN]**Robert A. McCoy and Ibula Ntantu,*Topological properties of spaces of continuous functions*, Lecture Notes in Mathematics, vol. 1315, Springer-Verlag, Berlin, 1988. MR**953314****[Mi]**E. Michael,*A note on closed maps and compact sets*, Israel J. Math.**2**(1964), 173–176. MR**0177396****[NS]**S. A. Naimpally and P. L. Sharma,*Fine uniformity and the locally finite hyperspace topology*, Proc. Amer. Math. Soc.**103**(1988), no. 2, 641–646. MR**943098**, 10.1090/S0002-9939-1988-0943098-9

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
54C35,
54B20,
54C08

Retrieve articles in all journals with MSC (2000): 54C35, 54B20, 54C08

Additional Information

**L'. Holá**

Affiliation:
Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia

Email:
hola@mat.savba.sk

**R. A. McCoy**

Affiliation:
Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Email:
mccoy@math.vt.edu

DOI:
https://doi.org/10.1090/S0002-9939-05-07793-2

Keywords:
Set-valued mapping,
Vietoris topology,
locally finite topology,
upper-semicontinuous multifunction,
usco map,
cusco map

Received by editor(s):
October 14, 2003

Received by editor(s) in revised form:
April 8, 2004

Published electronically:
February 15, 2005

Communicated by:
Alan Dow

Article copyright:
© Copyright 2005
American Mathematical Society