Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Relations approximated by continuous functions


Authors: L'. Holá and R. A. McCoy
Journal: Proc. Amer. Math. Soc. 133 (2005), 2173-2182
MSC (2000): Primary 54C35, 54B20, 54C08
DOI: https://doi.org/10.1090/S0002-9939-05-07793-2
Published electronically: February 15, 2005
MathSciNet review: 2137885
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $X$ be a Tychonoff space, let $C(X)$ be the space of all continuous real-valued functions defined on $X$ and let $CL(X \times R)$ be the hyperspace of all nonempty closed subsets of $X\times R$. We prove the following result. Let $X$ be a locally connected, countably paracompact, normal $q$-space without isolated points, and let $F \in CL(X \times R)$. Then $F$ is in the closure of $C(X)$ in $CL(X \times R)$ with the locally finite topology if and only if $F$is the graph of a cusco map. Some results concerning an approximation in the Vietoris topology are also given.


References [Enhancements On Off] (What's this?)

  • [Be1] Gerald Beer, Topologies on closed and closed convex sets, Mathematics and its Applications, vol. 268, Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1269778
  • [Be2] G. Beer, The approximation of real functions in the Hausdorff metric, Houston J. of Math. 10 (1984), 325-338. MR 0763235 (85m:41045)
  • [Be3] G. Beer, On functions that approximate relations, Proc. Amer. Math. Soc. 88 (1983), 643-647. MR 0702292 (84m:54018)
  • [Be4] G. Beer, On a theorem of Cellina for set valued functions, Rocky Mountain J. of Math. 18 (1988), 37-47. MR 0935726 (89c:54034)
  • [BHPV] G. Beer, J. Himmelberg, K. Prikry and F.S. Van Vleck, The locally finite topology on $2^{X}$, Proc. Amer. Math. Soc. 101 (1987), 168-172. MR 0897090 (88f:54014)
  • [Bo] J. M. Borwein, Minimal CUSCOS and subgradients of Lipschitz functions, Fixed point theory and applications (Marseille, 1989) Pitman Res. Notes Math. Ser., vol. 252, Longman Sci. Tech., Harlow, 1991, pp. 57–81 (English, with French summary). MR 1122818
  • [Ce] Arrigo Cellina, A further result on the approximation of set-valued mappings, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 48 (1970), 412–416 (English, with Italian summary). MR 0276935
  • [DB] F. De Blasi, Characterizations of certain classes of semicontinuous multifunctions by continuous approximation, J. Math. Anal. Appl. 106 (1985), 1-18. MR 0780314 (86h:54021)
  • [DBM] F. De Blasi and J. Myjak, On continuous approximations for multifunctions, Pacific J. Math. 123 (1986), 9-31. MR 0834135 (87g:54047)
  • [DHP] G. Di Maio, Ľ. Holá, and J. Pelant, Properties related to the first countability of hyperspace topologies, Questions Answers Gen. Topology 19 (2001), no. 1, 139–157. MR 1815355
  • [Ch] J.P.R. Christensen, Theorems of Namioka and R.E. Johnson type for upper semicontinuous and compact valued set-valued mappings, Proc. Amer. Math. Soc. 86 (1982), 649-655. MR 0674099 (83k:54014)
  • [En] R. Engelking, General Topology, Helderman, Berlin, 1989.
  • [Ho1] L'. Holá, On relations approximated by continuous functions, Acta Universitatis Carolinae - Mathematica et Physica 28 (1987), 67-72. MR 0932741 (89e:54031)
  • [Ho2] Ľubica Holá, Hausdorff metric on the space of upper semicontinuous multifunctions, Rocky Mountain J. Math. 22 (1992), no. 2, 601–610. MR 1180723, https://doi.org/10.1216/rmjm/1181072752
  • [Hu] Masuo Hukuhara, Sur l’application semi-continue dont la valeur est un compact convexe, Funkcial. Ekvac. 10 (1967), 43–66 (French). MR 0222856
  • [Mc] R. A. McCoy, Densely continuous forms in Vietoris hyperspaces, Set-Valued Anal. 8 (2000), no. 3, 267–271. MR 1790485, https://doi.org/10.1023/A:1008773312587
  • [MN] R.A. McCoy and I. Ntantu, Topological Properties of Spaces of Continuous Functions, Springer-Verlag, Berlin, 1988. MR 0953314 (90a:54046)
  • [Mi] E. Michael, A note on closed maps and compact sets, Israel J. Math. 2 (1964), 173–176. MR 0177396, https://doi.org/10.1007/BF02759940
  • [NS] S.A. Naimpally and P.L. Sharma, Fine uniformity and the locally finite hyperspace topology, Proc. Amer. Math. Soc. 103 (1988), 641-646. MR 0943098 (89f:54021)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 54C35, 54B20, 54C08

Retrieve articles in all journals with MSC (2000): 54C35, 54B20, 54C08


Additional Information

L'. Holá
Affiliation: Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia
Email: hola@mat.savba.sk

R. A. McCoy
Affiliation: Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
Email: mccoy@math.vt.edu

DOI: https://doi.org/10.1090/S0002-9939-05-07793-2
Keywords: Set-valued mapping, Vietoris topology, locally finite topology, upper-semicontinuous multifunction, usco map, cusco map
Received by editor(s): October 14, 2003
Received by editor(s) in revised form: April 8, 2004
Published electronically: February 15, 2005
Communicated by: Alan Dow
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society