Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A compact group which is not Valdivia compact

Authors: Wieslaw Kubis and Vladimir Uspenskij
Journal: Proc. Amer. Math. Soc. 133 (2005), 2483-2487
MSC (2000): Primary 54D30; Secondary 54C15, 22C05
Published electronically: February 25, 2005
MathSciNet review: 2138892
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A compact space $K$ is Valdivia compact if it can be embedded in a Tikhonov cube $I^A$ in such a way that the intersection $K\cap\Sigma$ is dense in $K$, where $\Sigma$ is the sigma-product ($=$ the set of points with countably many non-zero coordinates). We show that there exists a compact connected Abelian group of weight $\omega_1$ which is not Valdivia compact, and deduce that Valdivia compact spaces are not preserved by open maps.

References [Enhancements On Off] (What's this?)

  • 1. S. ARGYROS, S. MERCOURAKIS, S. NEGREPONTIS, Functional -analytic properties of Corson-compact spaces, Studia Math. 89 (1988), no. 3, 197-229. MR 0956239 (90e:46020)
  • 2. M. BURKE, W. KUBIS, S. TODORSCEVIC, Kadec norms on spaces of continuous functions, preprint.
  • 3. R. DEVILLE, G. GODEFROY, Some applications of projective resolutions of identity, Proc. London Math. Soc. (3) 67 (1993), no. 1, 183-199. MR 1218125 (94f:46018)
  • 4. R. ENGELKING, Theory of Dimensions: Finite and Infinite, Heldermann Verlag, Lemgo, 1995. MR 1363947 (97j:54033)
  • 5. L. FUCHS, Infinite Abelian Groups, Vol. I. Pure and Applied Mathematics, Vol. 36. Academic Press, New York-London, 1970. MR 0255673 (41:333)
  • 6. L. FUCHS, Infinite Abelian Groups, Vol. II. Pure and Applied Mathematics. Vol. 36-II. Academic Press, New York-London, 1973. MR 0349869 (50:2362)
  • 7. R. GODEMENT, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1964. MR 0345092 (49:9831)
  • 8. E. HEWITT, K. ROSS, Abstract Harmonic Analysis, Vol. I: Structure of topological groups. Integration theory, group representations. Die Grundlehren der mathematischen Wissenschaften, Bd. 115. Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156915 (28:158)
  • 9. O. KALENDA, Embedding of the ordinal segment $[0,\omega\sb 1]$ into continuous images of Valdivia compacta, Comment. Math. Univ. Carolin. 40 (1999), no. 4, 777-783. MR 1756552 (2001a:54015)
  • 10. O. KALENDA, A characterization of Valdivia compact spaces, Collect. Math. 51 (2000), no. 1, 59-81. MR 1757850 (2001d:54015)
  • 11. O. KALENDA, Valdivia compact spaces in topology and Banach space theory, Extracta Math. 15 (2000), no. 1, 1-85. MR 1792980 (2001k:46024)
  • 12. W. KUBIS, H. MICHALEWSKI, Small Valdivia compact spaces, preprint.
  • 13. E. SPANIER, Algebraic Topology, McGraw-Hill, New York et al., 1966. MR 0210112 (35:1007)
  • 14. V. USPENSKIJ, Why compact groups are dyadic, General Topology and its relations to modern analysis and algebra VI: Proc. of the 6th Prague topological Symposium 1986, Frolik Z. (ed.), Berlin: Heldermann Verlag, 1988, pp. 601-610. MR 0952585 (89c:54002)
  • 15. V. USPENSKIJ, Topological groups and Dugundji compacta, Matem. Sbornik 180 (1989), No. 8, 1092-1118 (Russian); English transl. in: Math. USSR Sbornik 67 (1990), 555-580. MR 1019483 (91a:54064)
  • 16. M. VALDIVIA, Projective resolution of identity in $C(K)$ spaces, Arch. Math. (Basel) 54 (1990), no. 5, 493-498. MR 1049205 (91f:46036)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 54D30, 54C15, 22C05

Retrieve articles in all journals with MSC (2000): 54D30, 54C15, 22C05

Additional Information

Wieslaw Kubis
Affiliation: Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland

Vladimir Uspenskij
Affiliation: Department of Mathematics, 321 Morton Hall, Ohio University, Athens, Ohio 45701

Keywords: Valdivia compact space, open map, retract, indecomposable group
Received by editor(s): November 1, 2003
Received by editor(s) in revised form: April 11, 2004
Published electronically: February 25, 2005
Communicated by: Alan Dow
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society