Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A compact group which is not Valdivia compact

Authors: Wieslaw Kubis and Vladimir Uspenskij
Journal: Proc. Amer. Math. Soc. 133 (2005), 2483-2487
MSC (2000): Primary 54D30; Secondary 54C15, 22C05
Published electronically: February 25, 2005
MathSciNet review: 2138892
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A compact space $K$ is Valdivia compact if it can be embedded in a Tikhonov cube $I^A$ in such a way that the intersection $K\cap\Sigma$ is dense in $K$, where $\Sigma$ is the sigma-product ($=$ the set of points with countably many non-zero coordinates). We show that there exists a compact connected Abelian group of weight $\omega_1$ which is not Valdivia compact, and deduce that Valdivia compact spaces are not preserved by open maps.

References [Enhancements On Off] (What's this?)

  • 1. S. ARGYROS, S. MERCOURAKIS, S. NEGREPONTIS, Functional -analytic properties of Corson-compact spaces, Studia Math. 89 (1988), no. 3, 197-229. MR 0956239 (90e:46020)
  • 2. M. BURKE, W. KUBIS, S. TODORSCEVIC, Kadec norms on spaces of continuous functions, preprint.
  • 3. Robert Deville and Gilles Godefroy, Some applications of projective resolutions of identity, Proc. London Math. Soc. (3) 67 (1993), no. 1, 183–199. MR 1218125,
  • 4. Ryszard Engelking, Theory of dimensions finite and infinite, Sigma Series in Pure Mathematics, vol. 10, Heldermann Verlag, Lemgo, 1995. MR 1363947
  • 5. László Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970. MR 0255673
  • 6. László Fuchs, Infinite abelian groups. Vol. II, Academic Press, New York-London, 1973. Pure and Applied Mathematics. Vol. 36-II. MR 0349869
  • 7. Roger Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1973 (French). Troisième édition revue et corrigée; Publications de l’Institut de Mathématique de l’Université de Strasbourg, XIII; Actualités Scientifiques et Industrielles, No. 1252. MR 0345092
  • 8. Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der mathematischen Wissenschaften, Bd. 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156915
  • 9. Ondřej Kalenda, Embedding of the ordinal segment [0,𝜔₁] into continuous images of Valdivia compacta, Comment. Math. Univ. Carolin. 40 (1999), no. 4, 777–783. MR 1756552
  • 10. Ondřej Kalenda, A characterization of Valdivia compact spaces, Collect. Math. 51 (2000), no. 1, 59–81. MR 1757850
  • 11. Ondřej F. K. Kalenda, Valdivia compact spaces in topology and Banach space theory, Extracta Math. 15 (2000), no. 1, 1–85. MR 1792980
  • 12. W. KUBIS, H. MICHALEWSKI, Small Valdivia compact spaces, preprint.
  • 13. Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210112
  • 14. V. USPENSKIJ, Why compact groups are dyadic, General Topology and its relations to modern analysis and algebra VI: Proc. of the 6th Prague topological Symposium 1986, Frolik Z. (ed.), Berlin: Heldermann Verlag, 1988, pp. 601-610. MR 0952585 (89c:54002)
  • 15. V. V. Uspenskiĭ, Topological groups and Dugundji compact spaces, Mat. Sb. 180 (1989), no. 8, 1092–1118, 1151 (Russian); English transl., Math. USSR-Sb. 67 (1990), no. 2, 555–580. MR 1019483,
  • 16. M. Valdivia, Projective resolution of identity in 𝐶(𝐾) spaces, Arch. Math. (Basel) 54 (1990), no. 5, 493–498. MR 1049205,

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 54D30, 54C15, 22C05

Retrieve articles in all journals with MSC (2000): 54D30, 54C15, 22C05

Additional Information

Wieslaw Kubis
Affiliation: Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland

Vladimir Uspenskij
Affiliation: Department of Mathematics, 321 Morton Hall, Ohio University, Athens, Ohio 45701

Keywords: Valdivia compact space, open map, retract, indecomposable group
Received by editor(s): November 1, 2003
Received by editor(s) in revised form: April 11, 2004
Published electronically: February 25, 2005
Communicated by: Alan Dow
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society