Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Low regularity solutions for a class of nonlinear wave equations


Author: Nikolaos Bournaveas
Journal: Proc. Amer. Math. Soc. 133 (2005), 2721-2727
MSC (2000): Primary 35L70
DOI: https://doi.org/10.1090/S0002-9939-05-07813-5
Published electronically: March 22, 2005
MathSciNet review: 2146219
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct local low regularity solutions for a class of nonlinear wave equations with power-type nonlinearities.


References [Enhancements On Off] (What's this?)

  • [B] Bournaveas, N. Local existence for the Maxwell-Dirac equations in three space dimensions. Comm. Partial Differential Equations 21 (1996), no. 5-6, 693-720. MR 1391520 (97f:35176)
  • [C] Christ, M.: Lectures on singular integral operators. CBMS Regional Conference Series in Mathematics, 77, AMS, 1990. MR 1104656 (92f:42021)
  • [CW] Christ, F. M.; Weinstein, M. I. Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation. J. Funct. Anal. 100 (1991), no. 1, 87-109. MR 1124294 (92h:35203)
  • [EV] Escobedo, M.; Vega, L.: A semilinear Dirac equation in $H\sp s(R\sp 3)$ for $s>1$. SIAM J. Math. Anal. 28 (1997), no. 2, 338-362. MR 1434039 (97k:35239)
  • [Ka] Kato, T. On nonlinear Schrödinger equations, II. $H^s$solutions and uncontitional well posedness, J. d'Analyse Math. 67 (1995), 281-306. MR 1383498 (98a:35124a)
  • [K] Klainerman, S. Mathematical theory of classical fields and general relativity. Mathematical Physics, X (Leipzig, 1991), 213-236, Springer, Berlin, 1992. MR 1386408
  • [KM] Klainerman, S.; Machedon, M. Space-time estimates for null forms and the local existence theorem. Comm. Pure Appl. Math. 46 (1993), no. 9, 1221-1268. MR 1231427 (94h:35137)
  • [LS] Lindblad, H.; Sogge, C.: On existence and scattering with minimal regularity for semilinear wave equations. J. Funct. Anal. 130 (1995), no. 2, 357-426. MR 1335386 (96i:35087)
  • [M-S] Montgomery-Smith, S. J. Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equations. Duke Math. J. 91 (1998), no. 2, 393-408. MR 1600602 (99e:35006)
  • [P] Planchon, F.; On uniqueness for semilinear wave equations. Math. Z. 244 (2003), no. 3, 587-599. MR 1992026 (2004e:35157)
  • [PS] Ponce, G; Sideris, T.C. Local regularity of nonlinear wave equations in three space dimensions. Comm. Partial Differential Equations 18 (1993), no. 1-2, 169-177. MR 1211729 (95a:35092)
  • [S] Sogge, C.D. Lectures on nonlinear wave equations. Monographs in Analysis, II. International Press, Boston, MA, 1995. MR 1715192 (2000g:35153)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35L70

Retrieve articles in all journals with MSC (2000): 35L70


Additional Information

Nikolaos Bournaveas
Affiliation: School of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
Email: N.Bournaveas@ed.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-05-07813-5
Received by editor(s): September 1, 2003
Received by editor(s) in revised form: May 3, 2004
Published electronically: March 22, 2005
Communicated by: Christopher D. Sogge
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society