Low regularity solutions for a class of nonlinear wave equations

Author:
Nikolaos Bournaveas

Journal:
Proc. Amer. Math. Soc. **133** (2005), 2721-2727

MSC (2000):
Primary 35L70

DOI:
https://doi.org/10.1090/S0002-9939-05-07813-5

Published electronically:
March 22, 2005

MathSciNet review:
2146219

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct local low regularity solutions for a class of nonlinear wave equations with power-type nonlinearities.

**[B]**Bournaveas, N. Local existence for the Maxwell-Dirac equations in three space dimensions. Comm. Partial Differential Equations 21 (1996), no. 5-6, 693-720. MR**1391520 (97f:35176)****[C]**Christ, M.: Lectures on singular integral operators. CBMS Regional Conference Series in Mathematics, 77, AMS, 1990. MR**1104656 (92f:42021)****[CW]**Christ, F. M.; Weinstein, M. I. Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation. J. Funct. Anal. 100 (1991), no. 1, 87-109. MR**1124294 (92h:35203)****[EV]**Escobedo, M.; Vega, L.: A semilinear Dirac equation in for . SIAM J. Math. Anal. 28 (1997), no. 2, 338-362. MR**1434039 (97k:35239)****[Ka]**Kato, T. On nonlinear Schrödinger equations, II. solutions and uncontitional well posedness, J. d'Analyse Math. 67 (1995), 281-306. MR**1383498 (98a:35124a)****[K]**Klainerman, S. Mathematical theory of classical fields and general relativity. Mathematical Physics, X (Leipzig, 1991), 213-236, Springer, Berlin, 1992. MR**1386408****[KM]**Klainerman, S.; Machedon, M. Space-time estimates for null forms and the local existence theorem. Comm. Pure Appl. Math. 46 (1993), no. 9, 1221-1268. MR**1231427 (94h:35137)****[LS]**Lindblad, H.; Sogge, C.: On existence and scattering with minimal regularity for semilinear wave equations. J. Funct. Anal. 130 (1995), no. 2, 357-426. MR**1335386 (96i:35087)****[M-S]**Montgomery-Smith, S. J. Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equations. Duke Math. J. 91 (1998), no. 2, 393-408. MR**1600602 (99e:35006)****[P]**Planchon, F.; On uniqueness for semilinear wave equations. Math. Z. 244 (2003), no. 3, 587-599. MR**1992026 (2004e:35157)****[PS]**Ponce, G; Sideris, T.C. Local regularity of nonlinear wave equations in three space dimensions. Comm. Partial Differential Equations 18 (1993), no. 1-2, 169-177. MR**1211729 (95a:35092)****[S]**Sogge, C.D. Lectures on nonlinear wave equations. Monographs in Analysis, II. International Press, Boston, MA, 1995. MR**1715192 (2000g:35153)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35L70

Retrieve articles in all journals with MSC (2000): 35L70

Additional Information

**Nikolaos Bournaveas**

Affiliation:
School of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

Email:
N.Bournaveas@ed.ac.uk

DOI:
https://doi.org/10.1090/S0002-9939-05-07813-5

Received by editor(s):
September 1, 2003

Received by editor(s) in revised form:
May 3, 2004

Published electronically:
March 22, 2005

Communicated by:
Christopher D. Sogge

Article copyright:
© Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.