Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A note on the zero Mach number limit of compressible Euler equations


Author: Wen-An Yong
Journal: Proc. Amer. Math. Soc. 133 (2005), 3079-3085
MSC (2000): Primary 35B25, 35L45, 76N10
Published electronically: April 20, 2005
MathSciNet review: 2159788
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This note presents a short and elementary justification of the classical zero Mach number limit for isentropic compressible Euler equations with prepared initial data. We also show the existence of smooth compressible flows, with the Mach number sufficiently small, on the (finite) time interval where the incompressible Euler equations have smooth solutions.


References [Enhancements On Off] (What's this?)

  • 1. Thomas Hagstrom and Jens Lorenz, On the stability of approximate solutions of hyperbolic-parabolic systems and the all-time existence of smooth, slightly compressible flows, Indiana Univ. Math. J. 51 (2002), no. 6, 1339–1387. MR 1948453, 10.1512/iumj.2002.51.2061
  • 2. Tosio Kato, Nonstationary flows of viscous and ideal fluids in 𝑅³, J. Functional Analysis 9 (1972), 296–305. MR 0481652
  • 3. Sergiu Klainerman and Andrew Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math. 34 (1981), no. 4, 481–524. MR 615627, 10.1002/cpa.3160340405
  • 4. Sergiu Klainerman and Andrew Majda, Compressible and incompressible fluids, Comm. Pure Appl. Math. 35 (1982), no. 5, 629–651. MR 668409, 10.1002/cpa.3160350503
  • 5. A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, New York, 1984. MR 748308
  • 6. G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations, Arch. Ration. Mech. Anal. 158 (2001), no. 1, 61–90. MR 1834114, 10.1007/PL00004241
  • 7. R. Temam, Local existence of 𝐶^{∞} solutions of the Euler equations of incompressible perfect fluids, Turbulence and Navier-Stokes equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975) Springer, Berlin, 1976, pp. 184–194. Lecture Notes in Math., Vol. 565. MR 0467033
  • 8. Wen-An Yong, Singular perturbations of first-order hyperbolic systems with stiff source terms, J. Differential Equations 155 (1999), no. 1, 89–132. MR 1693210, 10.1006/jdeq.1998.3584
  • 9. Wen-An Yong, Basic aspects of hyperbolic relaxation systems, Advances in the theory of shock waves, Progr. Nonlinear Differential Equations Appl., vol. 47, Birkhäuser Boston, Boston, MA, 2001, pp. 259–305. MR 1842777

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35B25, 35L45, 76N10

Retrieve articles in all journals with MSC (2000): 35B25, 35L45, 76N10


Additional Information

Wen-An Yong
Affiliation: IWR, Universität Heidelberg, Im Neuenheimer Feld 294, 69120 Heidelberg, Germany
Email: yong.wen-an@iwr.uni-heidelberg.de

DOI: http://dx.doi.org/10.1090/S0002-9939-05-08077-9
Keywords: Compressible Euler equations, incompressible limit, symmetrizable hyperbolic systems, continuation principle, energy estimates
Received by editor(s): June 4, 2004
Published electronically: April 20, 2005
Communicated by: M. Gregory Forest
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.