Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Topological entropy and AF subalgebras of graph $C^*$-algebras


Authors: Ja A Jeong and Gi Hyun Park
Journal: Proc. Amer. Math. Soc. 134 (2006), 215-228
MSC (2000): Primary 46L05, 46L55
DOI: https://doi.org/10.1090/S0002-9939-05-08165-7
Published electronically: June 29, 2005
MathSciNet review: 2170561
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\mathcal A_E$ be the canonical AF subalgebra of a graph $C^*$-algebra $C^*(E)$ associated with a locally finite directed graph $E$. For Brown and Voiculescu's topological entropy $ht(\Phi_E)$ of the canonical completely positive map $\Phi_E$ on $C^*(E)$, $ht(\Phi_E)=ht(\Phi_E\vert _{\mathcal A_E})=h_l(E)=h_b(E)$is known to hold for a finite graph $E$, where $h_l(E)$ is the loop entropy of Gurevic and $h_b(E)$ is the block entropy of Salama. For an irreducible infinite graph $E$, the inequality $h_l(E)\leq ht(\Phi_E\vert _{\mathcal A_E})$ has recently been known. It is shown in this paper that

\begin{displaymath}ht(\Phi_E\vert _{\mathcal A_E})\leq \max\{ h_b(E), h_b(\,{}^{t}E)\},\end{displaymath}

where ${}^tE$ is the graph $E$ with the direction of the edges reversed. Some irreducible infinite graphs $E_p (p>1)$ with $ht(\Phi_E\vert _{\mathcal A_{E_p}})=\log p$ are also examined.


References [Enhancements On Off] (What's this?)

  • 1. N. P. Brown, K. Dykema and D. Shlyakhtenko, Topological entropy of free product automorphisms, Acta Math. 189 (2002), 1-35. MR 1946916 (2003i:46073)
  • 2. F. P. Boca and P. Goldstein, Topological entropy for the canonical endomorphism of Cuntz-Krieger algebras, Bull. London Math. Soc. 32 (2000), 345-352. MR 1747834 (2001f:46097)
  • 3. T. Bates, D. Pask, I. Raeburn and W. Szymanski, The $C^*$-algebras of row-finite graphs, New York J. Math. 6 (2000), 307-324. MR 1777234 (2001k:46084)
  • 4. N. P. Brown, Topological entropy in exact $C^*$-algebras, Math. Ann. 314 (1999), 347-367. MR 1697449 (2000g:46093)
  • 5. M. Choda, Endomorphisms of shift type (entropy for endomorphisms of Cuntz algebras), Operator Algebras and Quantum Field Theory (Rome, 1996), 469-475, International Press, Cambridge, MA. MR 1491136
  • 6. J. Cuntz, Simple $C^*$-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173-185. MR 0467330 (57:7189)
  • 7. J. Cuntz and W. Krieger, A class of $C^*$-algebras and topological Markov chains, Invent. Math. 56 (1980), 251-268. MR 0561974 (82f:46073a)
  • 8. V. Deaconu, Entropy estimates for some $C^*$-endomorphisms, Proc. Amer. Math. Soc. 127 (1999), no. 12, 3653-3658. MR 1632272 (2000d:46081)
  • 9. K. Dykema, Topological entropy of some automorphisms of reduced amalgamated free product $C^*$-algebras, Ergodic Theory Dynam. Systems, 21 (2001), 1683-1693. MR 1869065 (2002i:46062)
  • 10. B. M. Gurevic, Topological entropy of enumerable Markov chains, Dokl. Akad. Nauk SSSR 187 (1969), 216-226. Soviet Math. Dokl. 10 (1969), 911-915. MR 0263162 (41:7767)
  • 11. J. A Jeong and G. H. Park, Topological entropy for the canonical completely positive maps of graph $C^*$-algebras, Bull. Austral. Math. Soc. 70 (2004), 101-116. MR 2079364 (2005e:46096)
  • 12. J. A Jeong and G. H. Park, Dynamical systems in graph $C^*$-algebras, preprint 2004.
  • 13. E. Kirchberg, On subalgebras of the CAR-algebra, J. Funct. Anal. 129 (1995), no. 1, 35-63. MR 1322641 (95m:46094b)
  • 14. B. P. Kitchens, Symbolic Dynamics, Springer 1998. MR 1484730 (98k:58079)
  • 15. A. Kumjian, Notes on $C^*$-algebras of graphs, Contemporary Math. 228, Operator Algebras and Operator Theory, 1998, AMS. MR 1667662 (99m:46137)
  • 16. A. Kumjian, D. Pask and I. Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific J. Math. 184 (1998), 161-174. MR 1626528 (99i:46049)
  • 17. A. Kumjian, D. Pask, I. Raeburn, and J. Renault, Graphs, groupoids, and Cuntz-Krieger algebras, J. Funct. Anal. 144 (1997), 505-541. MR 1432596 (98g:46083)
  • 18. D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press 1999. MR 1369092 (97a:58050)
  • 19. C. Pinzari, Y. Watatani and K. Yonetani, KMS states, entropy and the variational principle in full $C^*$-dynamical systems, Commun. Math. Phys. 213 (2000), 331-379. MR 1785460 (2002a:46097)
  • 20. I. A. Salama, Topological entropy and recurrence of countable chains, Pacific J. Math. 134 (1988), 325-341. MR 0961239 (90d:54076)
  • 21. E. Størmer, Entropy of some automorphisms of the II${}_1$ factor of the free group in infinite number of generators, Invent. Math. 110 (1992), 63-73. MR 1181816 (93i:46112)
  • 22. D. Voiculescu, Dynamical approximation entropies and topological entropy in operator algebras, Comm. Math. Phys. 170 (1995), 249-281. MR 1334396 (97b:46082)
  • 23. P. Walters, An introduction to ergodic theory, GTM 79, Springer 1982. MR 0648108 (84e:28017)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L05, 46L55

Retrieve articles in all journals with MSC (2000): 46L05, 46L55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-05-08165-7
Received by editor(s): March 22, 2004
Received by editor(s) in revised form: August 26, 2004
Published electronically: June 29, 2005
Additional Notes: The first author was partially supported by KOSEF R14-2003-006-01000-0
The second author was partially supported by KOSEF R01-2001-000-00001-0
Communicated by: David R. Larson
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society