Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Fixed point theorems in ordered $L$-spaces


Authors: Adrian Petrusel and Ioan A. Rus
Journal: Proc. Amer. Math. Soc. 134 (2006), 411-418
MSC (2000): Primary 47H10; Secondary 54H25, 15A24
DOI: https://doi.org/10.1090/S0002-9939-05-07982-7
Published electronically: August 25, 2005
MathSciNet review: 2176009
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to present some fixed point results in ordered L-spaces. Our results generalize and extend a recent result of Ran and Reurings (2004). Some applications to matrix equations are also considered.


References [Enhancements On Off] (What's this?)

  • 1. T. A. Burton, Integral equations, implicit functions and fixed points, Proc. A.M.S., 124:2393-2390, 1996. MR 1346965 (96j:45001)
  • 2. E. De Pascale, G. Marino and P. Pietromala, The use of the E-metric spaces in the search for fixed points, Le Mathematiche, 48:367-376, 1993. MR 1320676 (95m:54037)
  • 3. M. Fréchet, Les espaces abstraits, Gauthier-Villars, Paris, 1928. MR 1189135 (93g:01098)
  • 4. O. Hadzic, E. Pap and V. Radu, Generalized contraction mapping principles in probabilistic metric spaces, Acta Math. Hungar., 101:131-138, 2003. MR 2011468 (2004i:54052)
  • 5. O. Hadzic and E. Pap, Fixed point theory in probabilistic metric spaces, Kluwer Acad. Publ., Dordrecht, 2001. MR 1896451 (2003a:47113)
  • 6. W. A. Kirk, B. Sims (editors), Handbook of metric fixed point theory, Kluwer Acad. Publ., Dordrecht, 2001. MR 1904271 (2003b:47002)
  • 7. J. Merryfield and J. D. Stein, A generalization of the Banach contraction principle, J. Math. Anal. Appl., 273:112-120, 2002. MR 1933019 (2003g:54100)
  • 8. A. Petrusel, Multivalued weakly Picard operators and applications, Scienticae Mathematicae Japonicae, 59:167-202, 2004. MR 2027745 (2004j:47101)
  • 9. A. C. M. Ran and M.C. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. A.M.S., 132:1435-1443, 2004. MR 2053350 (2005a:47112)
  • 10. I. A. Rus, Generalized contractions and applications, Cluj Univ. Press, 2001. MR 1947742 (2004f:54043)
  • 11. I. A. Rus, Picard operators and applications, Scientia Mathematicae Japonicae, 58:191-219, 2003. MR 1987831 (2004m:47142)
  • 12. I. A. Rus, A. Petrusel, and G. Petrusel, Fixed point theory 1950-2000: Romanian contributions, House of the Book of Science, Cluj-Napoca, 2002. MR 1947195 (2003h:47104)
  • 13. P. P. Zabreiko, K-metric and K-normed linear spaces: survey, Collect. Math., 48:825-859, 1997. MR 1602605 (99a:46010)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47H10, 54H25, 15A24

Retrieve articles in all journals with MSC (2000): 47H10, 54H25, 15A24


Additional Information

Adrian Petrusel
Affiliation: Department of Applied Mathematics, Babeş-Bolyai University Cluj-Napoca, Kogăl- niceanu 1, 400084, Cluj-Napoca, Romania
Email: petrusel@math.ubbcluj.ro

Ioan A. Rus
Affiliation: Department of Applied Mathematics, Babeş-Bolyai University Cluj-Napoca, Kogăl- niceanu 1, 400084, Cluj-Napoca, Romania
Email: iarus@math.ubbcluj.ro

DOI: https://doi.org/10.1090/S0002-9939-05-07982-7
Received by editor(s): June 18, 2004
Received by editor(s) in revised form: September 1, 2004
Published electronically: August 25, 2005
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society