Angular self-intersections for closed geodesics on surfaces

Authors:
Mark Pollicott and Richard Sharp

Journal:
Proc. Amer. Math. Soc. **134** (2006), 419-426

MSC (2000):
Primary 37C27, 37D20, 37D35, 37D40

Published electronically:
September 20, 2005

MathSciNet review:
2176010

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we consider asymptotic results for self-intersections of closed geodesics on surfaces for which the angle of the intersection occurs in a given arc. We do this by extending Bonahon's definition of intersection forms for surfaces.

**[An]**N. Anantharaman,*Distribution of closed geodesics on a surface, under homological constraints*, preprint, 1999.**[As]**D. V. Anosov,*Geodesic flows on closed Riemann manifolds with negative curvature.*, Proceedings of the Steklov Institute of Mathematics, No. 90 (1967). Translated from the Russian by S. Feder, American Mathematical Society, Providence, R.I., 1969. MR**0242194****[BS]**Joan S. Birman and Caroline Series,*Geodesics with bounded intersection number on surfaces are sparsely distributed*, Topology**24**(1985), no. 2, 217–225. MR**793185**, 10.1016/0040-9383(85)90056-4**[Bo1]**Francis Bonahon,*Bouts des variétés hyperboliques de dimension 3*, Ann. of Math. (2)**124**(1986), no. 1, 71–158 (French). MR**847953**, 10.2307/1971388**[Bo2]**Francis Bonahon,*The geometry of Teichmüller space via geodesic currents*, Invent. Math.**92**(1988), no. 1, 139–162. MR**931208**, 10.1007/BF01393996**[Do]**D. Dolgopyat,*On statistical properties of geodesic flows on negatively curved surfaces*, Ph.D. thesis, Princeton, 1997.**[Hu1]**Heinz Huber,*Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen*, Math. Ann.**138**(1959), 1–26 (German). MR**0109212****[Hu2]**Heinz Huber,*Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. II*, Math. Ann.**142**(1960/1961), 385–398 (German). MR**0126549****[Ke]**J. Keating,*Periodic orbits, spectral statistics, and the Riemann zeros*, Supersymmetry and trace formulae (I. Lerner, J. Keating and D. Khmelnitskii, eds.), Kluwer, New York, 1999, pp. 1-15.**[Ki]**Yuri Kifer,*Large deviations, averaging and periodic orbits of dynamical systems*, Comm. Math. Phys.**162**(1994), no. 1, 33–46. MR**1272765****[La]**Steven P. Lalley,*Self-intersections of closed geodesics on a negatively curved surface: statistical regularities*, Convergence in ergodic theory and probability (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., vol. 5, de Gruyter, Berlin, 1996, pp. 263–272. MR**1412610****[Ma]**G. A. Margulis,*Certain applications of ergodic theory to the investigation of manifolds of negative curvature*, Funkcional. Anal. i Priložen.**3**(1969), no. 4, 89–90 (Russian). MR**0257933****[Ot]**Jean-Pierre Otal,*Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3*, Astérisque**235**(1996), x+159 (French, with French summary). MR**1402300****[Po]**Mark Pollicott,*Asymptotic distribution of closed geodesics*, Israel J. Math.**52**(1985), no. 3, 209–224. MR**815810**, 10.1007/BF02786516**[PS]**Mark Pollicott and Richard Sharp,*Exponential error terms for growth functions on negatively curved surfaces*, Amer. J. Math.**120**(1998), no. 5, 1019–1042. MR**1646052****[SR]**M. Sieber and K. Richter,*Correlations between periodic orbits and their rôle in spectral statistics*, Physica Scripta**T90**(2001), 128-133.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
37C27,
37D20,
37D35,
37D40

Retrieve articles in all journals with MSC (2000): 37C27, 37D20, 37D35, 37D40

Additional Information

**Mark Pollicott**

Affiliation:
Department of Mathematics, Manchester University, Oxford Road, Manchester M13 9PL, United Kingdom

Address at time of publication:
Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

**Richard Sharp**

Affiliation:
Department of Mathematics, Manchester University, Oxford Road, Manchester M13 9PL, United Kingdom

DOI:
https://doi.org/10.1090/S0002-9939-05-08382-6

Received by editor(s):
October 15, 2003

Received by editor(s) in revised form:
September 4, 2004

Published electronically:
September 20, 2005

Additional Notes:
The second author was supported by an EPSRC Advanced Research Fellowship

Communicated by:
Michael Handel

Article copyright:
© Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.