Angular self-intersections for closed geodesics on surfaces

Authors:
Mark Pollicott and Richard Sharp

Journal:
Proc. Amer. Math. Soc. **134** (2006), 419-426

MSC (2000):
Primary 37C27, 37D20, 37D35, 37D40

DOI:
https://doi.org/10.1090/S0002-9939-05-08382-6

Published electronically:
September 20, 2005

MathSciNet review:
2176010

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we consider asymptotic results for self-intersections of closed geodesics on surfaces for which the angle of the intersection occurs in a given arc. We do this by extending Bonahon's definition of intersection forms for surfaces.

**[An]**N. Anantharaman,*Distribution of closed geodesics on a surface, under homological constraints*, preprint, 1999.**[As]**D. Anosov,*Geodesic flows of closed Riemann manifolds with negative curvature*, Proceedings of the Steklov Institute of Mathematics, Vol. 90, Amer. Math. Soc., Providence, RI, 1969. MR**0242194 (39:3527)****[BS]**J. Birman and C. Series,*Geodesics with bounded intersection number on surfaces are sparsely distributed*, Topology**24**(1985), 217-225. MR**0793185 (87f:57012)****[Bo1]**F. Bonahon,*Bouts des variétés hyperboliques de dimension*, Annals of Math.**124**(1986), 71-158. MR**0847953 (88c:57013)****[Bo2]**F. Bonahon,*The geometry of Teichmüller spaces via geodesic currents*, Invent. Math.**92**(1988), 139-162. MR**0931208 (90a:32025)****[Do]**D. Dolgopyat,*On statistical properties of geodesic flows on negatively curved surfaces*, Ph.D. thesis, Princeton, 1997.**[Hu1]**H. Huber,*Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen*, Math. Ann.**138**(1959), 1-26. MR**0109212 (22:99)****[Hu2]**H. Huber,*Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen, II*, Math. Ann.**142**(1961), 385-398. MR**0126549 (23:A3845)****[Ke]**J. Keating,*Periodic orbits, spectral statistics, and the Riemann zeros*, Supersymmetry and trace formulae (I. Lerner, J. Keating and D. Khmelnitskii, eds.), Kluwer, New York, 1999, pp. 1-15.**[Ki]**Y. Kifer,*Large deviations, averaging and periodic orbits of dynamical systems*, Comm. Math. Phys.**162**(1994), 33-46. MR**1272765 (95b:58091)****[La]**S. Lalley,*Self-intersections of closed geodesics on a negatively curved surface: statistical regularities*, Convergence in ergodic theory and probability (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., 5, de Gruyter, Berlin, 1996, pp. 263-272. MR**1412610 (97h:58103)****[Ma]**G. Margulis,*Certain applications of ergodic theory to the study of manifolds of negative curvature*, Functional Anal. Appl.**3**(1969), 89-90. MR**0257933 (41:2582)****[Ot]**J.-P. Otal,*Le théorème d'hyperbolisation pour less variétés fibreés de dimension*, Asterisque**235**(1996), 1-159. MR**1402300 (97e:57013)****[Po]**M. Pollicott,*Asymptotic distribution of closed geodesics*, Israel J. Math.**52**(1985), 209-224. MR**0815810 (87g:58105)****[PS]**M. Pollicott and R. Sharp,*Exponential error terms for growth functions on negatively curved surfaces*, Amer. J. Math.**120**(1998), 1019-1042. MR**1646052 (99h:58148)****[SR]**M. Sieber and K. Richter,*Correlations between periodic orbits and their rôle in spectral statistics*, Physica Scripta**T90**(2001), 128-133.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
37C27,
37D20,
37D35,
37D40

Retrieve articles in all journals with MSC (2000): 37C27, 37D20, 37D35, 37D40

Additional Information

**Mark Pollicott**

Affiliation:
Department of Mathematics, Manchester University, Oxford Road, Manchester M13 9PL, United Kingdom

Address at time of publication:
Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

**Richard Sharp**

Affiliation:
Department of Mathematics, Manchester University, Oxford Road, Manchester M13 9PL, United Kingdom

DOI:
https://doi.org/10.1090/S0002-9939-05-08382-6

Received by editor(s):
October 15, 2003

Received by editor(s) in revised form:
September 4, 2004

Published electronically:
September 20, 2005

Additional Notes:
The second author was supported by an EPSRC Advanced Research Fellowship

Communicated by:
Michael Handel

Article copyright:
© Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.