Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Mauldin-Williams graphs, Morita equivalence and isomorphisms


Author: Marius Ionescu
Journal: Proc. Amer. Math. Soc. 134 (2006), 1087-1097
MSC (2000): Primary 46K50, 46L08; Secondary 26A18, 37A55, 37B10, 37E25
DOI: https://doi.org/10.1090/S0002-9939-05-08055-X
Published electronically: July 25, 2005
MathSciNet review: 2196042
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe a method for associating some non-self-adjoint algebras to Mauldin-Williams graphs and we study the Morita equivalence and isomorphism of these algebras.

We also investigate the relationship between the Morita equivalence and isomorphism class of the $C^{\ast}$-correspondences associated with Mauldin-Williams graphs and the dynamical properties of the Mauldin-Williams graphs.


References [Enhancements On Off] (What's this?)

  • 1. M. F. Barnsley, Fractals everywhere, Second edition, Academic Press Professional, Boston, MA, 1993. MR 1231795 (94h:58101)
  • 2. D. P. Blecher, P. S. Muhly, V. I. Paulsen, `Categories of operator modules (Morita equivalence and projective modules).' Mem. Amer. Math. Soc. 143 (2000), no. 681, viii+94 pp. MR 1645699 (2000j:46132)
  • 3. J. Cuntz, `Simple $C^{*}$-algebras generated by isometries', Comm. Math. Phys, 57 (1977), no. 2, 173-185. MR 0467330 (57:7189)
  • 4. J. Cuntz and W. Krieger, `A class of $C^{*}$-algebras and topological Markov chains', Invent. Math. 56 (1980), no. 3, 251-268. MR 0561974 (82f:46073a)
  • 5. G. A. Edgar, Measure, topology, and fractal geometry, Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1990. MR 1065392 (92a:54001)
  • 6. N. J. Fowler, P. S. Muhly and I. Raeburn, `Representations of Cuntz-Pimsner Algebras', Indiana Univ. Math. J. 52 (2003), no. 3, 569-605. MR 1986889
  • 7. J. E. Hutchinson, `Fractals and self-similarity', Indiana Univ. Math. J. 30 (1981), no. 5, 713-747. MR 0625600 (82h:49026)
  • 8. M. Ionescu, `Operator Algebras and Mauldin-Williams graphs', preprint OA/0401408.
  • 9. T. Kajiwara and Y. Watatani, `$C^{\ast}$-algebras associated with self-similar sets', preprint OA/0312481.
  • 10. T. Kajiwara and Y. Watatani, `KMS states on $C^{\ast}$-algebras associated with self-similar sets', preprint OA/0405514.
  • 11. J. Kigami, Analysis on Fractals, 2001, Cambridge University Press. MR 1840042 (2002c:28015)
  • 12. A. Kumjian, D. Pask and I. Raeburn, `Cuntz-Krieger algebras of directed graphs', Pacific J. Math. 184 (1998), no. 1, 161-174. MR 1626528 (99i:46049)
  • 13. E. C. Lance, Hilbert $C^{*}$-modules. A toolkit for operator algebraists, London Mathematical Society Lecture Note Series, 210. Cambridge University Press, Cambridge, 1995. MR 1325694 (96k:46100)
  • 14. R. D. Mauldin and S. C. Williams, `Hausdorff dimension in graph directed constructions', Trans. Amer. Math. Soc. 309 (1988), no. 2, 811-829. MR 0961615 (89i:28003)
  • 15. P. S. Muhly and B. Solel, `Tensor algebras over $C^{*}$-correspondences: representations, dilations, and $C^{*}$-envelopes', J. Funct. Anal. 158 (1998), no. 2, 389-457. MR 1648483 (99j:46066)
  • 16. P. S. Muhly and B. Solel, `On the Morita equivalence of tensor algebras', Proc. London Math. Soc. (3) 81 (2000), no. 1, 113-168. MR 1757049 (2001g:46128)
  • 17. M. V. Pimsner, `A class of $C^{*}$-algebras generalizing both Cuntz-Krieger algebras and crossed products by $\mathbb{Z} $', Free probability theory (Waterloo, ON, 1995), 189-212, Fields Inst. Commun., 12, Amer. Math. Soc., Providence, RI, 1997. MR 1426840 (97k:46069)
  • 18. C. Pinzari, Y. Watatani and K. Yonetani, `KMS states, entropy and the variational principle in full $C^{*}$-dynamical systems', Comm. Math. Phys. 213 (2000), no. 2, 331-379. MR 1785460 (2002a:46097)
  • 19. I. Raeburn, `On the Picard group of a continuous trace $C^{*}$-algebra', Trans. Amer. Math. Soc. 263 (1981), no. 1, 183-205. MR 0590419 (82b:46090)
  • 20. I. Raeburn and D. P. Williams, Morita equivalence and continuous-trace $C^{*}$-algebras, Mathematical Surveys and Monographs, 60. American Mathematical Society, Providence, RI, 1998. MR 1634408 (2000c:46108)
  • 21. M. A. Rieffel, `Induced representations of $C^{*}$-algebras', Advances in Math. 13 (1974), 176-257. MR 0353003 (50:5489)
  • 22. M. A. Rieffel, `Morita equivalence for $C^{*}$-algebras and $W^{*}$-algebras', J. Pure Appl. Algebra 5 (1974), 51-96. MR 0367670 (51:3912)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46K50, 46L08, 26A18, 37A55, 37B10, 37E25

Retrieve articles in all journals with MSC (2000): 46K50, 46L08, 26A18, 37A55, 37B10, 37E25


Additional Information

Marius Ionescu
Affiliation: Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242
Email: mionescu@math.uiowa.edu

DOI: https://doi.org/10.1090/S0002-9939-05-08055-X
Received by editor(s): September 1, 2004
Received by editor(s) in revised form: November 1, 2004
Published electronically: July 25, 2005
Communicated by: David R. Larson
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society