Mapping spaces and homology isomorphisms

Author:
Nicholas J. Kuhn; \break with an appendix by Greg Arone; Nicholas J. Kuhn

Journal:
Proc. Amer. Math. Soc. **134** (2006), 1237-1248

MSC (2000):
Primary 55P35; Secondary 55N20, 55P42

DOI:
https://doi.org/10.1090/S0002-9939-05-08062-7

Published electronically:
August 29, 2005

MathSciNet review:
2196061

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote the space of pointed continuous maps from a finite cell complex to a space . Let be a generalized homology theory. We use Goodwillie calculus methods to prove that under suitable conditions on and , will send an -isomorphism in either variable to a map that is monic in homology. Interesting examples arise by letting be -theory, the finite complex be a sphere, and the map in the variable be an exotic unstable Adams map between Moore spaces.

**[AK]**S.T. Ahearn and N. J. Kuhn,*Product and other fine structure in polynomial resolutions of mapping spaces*, Alg. Geom. Topol.**2**(2002), 591-647. MR**1917068 (2003j:55009)****[Ar]**G. Arone,*A generalization of Snaith-type filtration*, Trans. A. M. S.**351**(1999), 1123-1250. MR**1638238 (99i:55011)****[Bö]**C.-F. Bödigheimer,*Stable splitting of mapping spaces*, Springer L. N. Math.**1286**(1987), 174-187. MR**0922926 (89c:55011)****[B1]**A. K. Bousfield,*The localization of spaces with respect to homology*, Topology**14**(1975), 133-150. MR**0380779 (52:1676)****[B2]**A. K. Bousfield,*On**-rings and the**-theory of infinite loop spaces*, -Theory 10 (1996), no. 1, 1-30. MR**1373816 (98a:55006)****[B3]**A. K. Bousfield,*Homotopical localizations of spaces*, Amer. J. Math**119**(1997), 1321-1354. MR**1481817 (98m:55009)****[EKMM]**A.D. Elmendorf, I. Kriz, M.A. Mandell, J.P. May,*Rings, modules, and algebras in stable homotopy theory*, A. M. S. Math. Surveys and Monographs 47, 1997. MR**1417719 (97h:55006)****[G1]**T. G. Goodwillie,*Calculus I: the first derivative of pseudoisotopy*, K-theory**4**(1990), 1-27. MR**1076523 (92m:57027)****[G2]**T. G. Goodwillie,*Calculus II: analytic functors*, K-theory**5**(1992), 295-332. MR**1162445 (93i:55015)****[G3]**T. G. Goodwillie,*Calculus III: the Taylor series of a homotopy functor*, Geom. Topol.**7**(2003), 645-711. MR**2026544****[K1]**N. J. Kuhn,*Suspension spectra and homology equivalences*, Trans. A. M. S. 283 (1984), 303-313. MR**0735424 (85g:55014)****[K2]**N. J. Kuhn,*Localization of André-Quillen-Goodwillie towers, and the periodic homology of infinite loopspaces*, Advances in Mathematics, to appear (available online).**[K3]**N. J. Kuhn,*Goodwillie towers and chromatic homotopy: an overview*, International Conference in Algebraic Topology (Kinosaki, 2003), Geometry and Topology Monographs, to appear.**[LS]**L. Langsetmo and D. Stanley,*Nondurable**-theory equivalence and Bousfield localization*, K-theory**24**(2001), 397-410. MR**1885129 (2002k:55008)****[Ma]**J. P. May,*The geometry of interated loop spaces*, Springer L. N. Math.**271**, 1972. MR**0420610 (54:8623b)****[McD]**D. Mc Duff,*Configuration spaces of positive and negative particles*, Topology**14**(1975), 91-107. MR**0358766 (50:11225)****[S]**J. R. Stallings,*The embedding of homotopy types into manifolds*, unpublished 1965 paper, available at http://math.berkeley.edu/~stall/.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
55P35,
55N20,
55P42

Retrieve articles in all journals with MSC (2000): 55P35, 55N20, 55P42

Additional Information

**Nicholas J. Kuhn**

Affiliation:
Department of Mathematics, University of Virginia, Charlottesville, Virginia 22904

Email:
njk4x@virginia.edu

DOI:
https://doi.org/10.1090/S0002-9939-05-08062-7

Received by editor(s):
September 2, 2004

Received by editor(s) in revised form:
November 8, 2004

Published electronically:
August 29, 2005

Additional Notes:
This research was partially supported by a grant from the National Science Foundation

Communicated by:
Paul Goerss

Article copyright:
© Copyright 2005
American Mathematical Society