Simple real rank zero algebras with locally Hausdorff spectrum

Author:
Ping Wong Ng

Journal:
Proc. Amer. Math. Soc. **134** (2006), 2223-2228

MSC (2000):
Primary 46L35

Published electronically:
March 14, 2006

MathSciNet review:
2213694

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a unital, simple, separable -algebra with real rank zero, stable rank one, and weakly unperforated ordered group. Suppose, also, that can be locally approximated by type I algebras with Hausdorff spectrum and bounded irreducible representations (the bound being dependent on the local approximating algebra). Then is tracially approximately finite dimensional (i.e., has tracial rank zero).

Hence, is an -algebra with bounded dimension growth and is determined by -theoretic invariants.

The above result also gives the first proof for the locally case.

**1.**N. Brown,*Invariant means and finite representation theory of -algebras*, preprint. Available online at http://arxiv.org/abs/math.OA/0304009.**2.**Marius Dadarlat,*Some remarks on the universal coefficient theorem in 𝐾𝐾-theory*, Operator algebras and mathematical physics (Constanţa, 2001) Theta, Bucharest, 2003, pp. 65–74. MR**2018224****3.**Marius Dădărlat and Søren Eilers,*Approximate homogeneity is not a local property*, J. Reine Angew. Math.**507**(1999), 1–13. MR**1670254**, 10.1515/crll.1999.015**4.**Marius Dadarlat and Søren Eilers,*On the classification of nuclear 𝐶*-algebras*, Proc. London Math. Soc. (3)**85**(2002), no. 1, 168–210. MR**1901373**, 10.1112/S0024611502013679**5.**M. Dadarlat and G. Gong,*A classification result for approximately homogeneous 𝐶*-algebras of real rank zero*, Geom. Funct. Anal.**7**(1997), no. 4, 646–711. MR**1465599**, 10.1007/s000390050023**6.**J. Dixmier,*-algebras*, Paris, 1964; North Holland, Amsterdam/New York/Oxford.**7.**George A. Elliott and Guihua Gong,*On the classification of 𝐶*-algebras of real rank zero. II*, Ann. of Math. (2)**144**(1996), no. 3, 497–610. MR**1426886**, 10.2307/2118565**8.**G. Elliott, G. Gong, L. Li,*On the classification of simple inductive limit -algebras, II: the isomorphism theorem*, preprint.**9.**J. M. G. Fell,*The structure of algebras of operator fields*, Acta Math.**106**(1961), 233–280. MR**0164248****10.**Eberhard Kirchberg and Wilhelm Winter,*Covering dimension and quasidiagonality*, Internat. J. Math.**15**(2004), no. 1, 63–85. MR**2039212**, 10.1142/S0129167X04002119**11.**Huaxin Lin,*Homomorphisms from 𝐶*-algebras of continuous trace*, Math. Scand.**86**(2000), no. 2, 249–272. MR**1754997****12.**Huaxin Lin,*The tracial topological rank of 𝐶*-algebras*, Proc. London Math. Soc. (3)**83**(2001), no. 1, 199–234. MR**1829565**, 10.1112/plms/83.1.199**13.**Huaxin Lin,*Classification of simple 𝐶*-algebras of tracial topological rank zero*, Duke Math. J.**125**(2004), no. 1, 91–119. MR**2097358**, 10.1215/S0012-7094-04-12514-X**14.**Huaxin Lin,*Classification of simple 𝐶*-algebras with unique traces*, Amer. J. Math.**120**(1998), no. 6, 1289–1315. MR**1657178****15.**H. Lin,*Locally type I simple TAF -algebras*, preprint.**16.**H. Lin,*Simple AH-algebras of real rank zero*, preprint. To appear in the Proceedings of the AMS.**17.**Huaxin Lin,*Traces and simple 𝐶*-algebras with tracial topological rank zero*, J. Reine Angew. Math.**568**(2004), 99–137. MR**2034925**, 10.1515/crll.2004.021**18.**Iain Raeburn and Dana P. Williams,*Morita equivalence and continuous-trace 𝐶*-algebras*, Mathematical Surveys and Monographs, vol. 60, American Mathematical Society, Providence, RI, 1998. MR**1634408****19.**N. B. Vasil′ev,*𝐶*-algebras with finite-dimensional irreducible representations*, Uspehi Mat. Nauk**21**(1966), no. 1 (127), 135–154 (Russian). MR**0201994**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
46L35

Retrieve articles in all journals with MSC (2000): 46L35

Additional Information

**Ping Wong Ng**

Affiliation:
Department of Mathematics and Statistics, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3

Address at time of publication:
The Fields Institute for Research in Mathematical Sciences, 222 College Street, Toronto, Ontario, Canada M5T 3J1

Email:
pwn@erdos.math.unb.ca

DOI:
http://dx.doi.org/10.1090/S0002-9939-06-07916-0

Received by editor(s):
November 21, 2003

Received by editor(s) in revised form:
June 23, 2004

Published electronically:
March 14, 2006

Communicated by:
David R. Larson

Article copyright:
© Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.