Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On extended eigenvalues and extended eigenvectors of some operator classes

Author: M. T. Karaev
Journal: Proc. Amer. Math. Soc. 134 (2006), 2383-2392
MSC (2000): Primary 47A15
Published electronically: March 21, 2006
MathSciNet review: 2213712
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a complete description of the set of extended eigenvectors of the Volterra integration operator $ V,$ $ Vf(x)=\underset{0}{\overset{x}{\int }} f(t)dt$, on $ L^{2}\left[ 0,1\right] $, which strengthens the result of a paper by Biswas, Lambert, and Petrovic (2002). We also introduce the concept of a well splitting operator and study its extended eigenvalues and extended eigenvectors.

References [Enhancements On Off] (What's this?)

  • 1. A. Biswas, A. Lambert and S. Petrovic, Extended eigenvalues and the Volterra operator, Glasgow Math. J. 44(2002), 521-534. MR 1956558 (2004c:47039)
  • 2. A. Biswas, A. Lambert and S. Petrovic, On the extended eigenvectors for operators, Preprint.
  • 3. A. Lambert, Hyperinvariant subspaces and extended eigenvalues, New York J. Math. 10 (2004), 83-88. MR 2052366 (2004k:47007)
  • 4. N. K. Nikolski, Basisness and unicellularity of weighted shift operators, Izvestiya Akad. Nauk SSR, Ser. Mat., 32 (1968), 1123-1137 (in Russian). MR 0238098 (38:6374)
  • 5. M. T. Karaev and H. S. Mustafayev, On some properties of Deddens algebras, Rocky Mountain J. Math., 33, 3(2003), 915-926. MR 2038531 (2005f:47153)
  • 6. J. A. Deddens, Another description of nest algebras, Lecture Notes in Math., Vol. 693, Springer, New York, 1978, 77-86. MR 0526534 (80f:47033)
  • 7. M. T. Karaev and S. Pehlivan, Some results for quadratic elements of a Banach algebra, Glasgow Math. J. 46(2004), 431-441. MR 2094801
  • 8. V. S. Shulman, On transitivity of some space of operators, Functional Anal. Appl., 16(1982), 91-92. MR 0648826 (83d:47015)
  • 9. V. S. Shulman, Invariant subspace and spectral mapping theorem, Banach Center Publ., Vol. 30, PWN, Warsaw, 1994, 313-325. MR 1285617 (95m:47008)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47A15

Retrieve articles in all journals with MSC (2000): 47A15

Additional Information

M. T. Karaev
Affiliation: Department of Mathematics, Suleyman Demirel University, 32260 Isparta, Turkey

Keywords: Extended eigenvalue, extended eigenvector, Volterra integration operator
Received by editor(s): March 3, 2005
Received by editor(s) in revised form: March 14, 2005
Published electronically: March 21, 2006
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society