planes in
Author:
E. Batzies
Journal:
Proc. Amer. Math. Soc. 135 (2007), 3341-3347
MSC (2000):
Primary 52C35, 32S22; Secondary 58D29
DOI:
https://doi.org/10.1090/S0002-9939-07-08186-5
Published electronically:
June 19, 2007
MathSciNet review:
2322766
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We establish a homeomorphism between the moduli space of ordered
-tuples
of 2-dimensional linear subspaces
(mod
) and the quotient by simultaneous conjugation of a certain open subset
. For
, this leads to an explicit computation of the moduli space
of central 2-arrangements in
mod
and its subspace
of those classes that contain a complex hyperplane arrangement.
- 1. Arnol'd, V.I.: The cohomology ring of the colored braid group. Math. Notes 5, (1969), 138-140. MR 0242196 (39:3529)
- 2. Brieskorn, E.: Sur les groupes de tresses (d'après V.I. Arnol'd). Séminaire Bourbaki 24ème année 1971/72. (Lect. Notes Math., vol. 317, pp. 21-44) Berlin, Heidelberg, New York: Springer 1973. MR 0422674 (54:10660)
- 3. Brieskorn, E.: Lineare Algebra und analytische Geometrie 2. Braunschweig, Wiesbaden: Vieweg 1985. MR 815649 (87d:00001)
- 4. Goresky, M.; MacPherson, R.: Stratified Morse theory. Ergeb. Math. Grenzgeb., vol. 14, Springer-Verlag, New York-Berlin-Heidelberg, 1988. MR 932724 (90d:57039)
- 5.
Matei, D.; Suciu, A.I.: Homotopy types of complements of
-arrangements in
. Topology 39, No.1, (2000), 61-88. MR 1710992 (2000h:55028)
- 6. Orlik, P., Solomon, L.: Combinatorics and topology of complements of hyperplanes. Invent. Math. 56, (1980), 167-189. MR 558866 (81e:32015)
- 7. Randell, R.: Lattice-isotopic arrangements are topologically isomorphic. Proc. Amer. Math. Soc. 107 (1989), 555-559. MR 984812 (90a:57032)
- 8. Ziegler, G.: On the difference between real and complex arrangements. Math. Zeit. 212 (1993), 1-11. MR 1200161 (94f:52017)
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 52C35, 32S22, 58D29
Retrieve articles in all journals with MSC (2000): 52C35, 32S22, 58D29
Additional Information
E. Batzies
Affiliation:
Fachbereich Mathematik und Informatik, Universität Marburg, 35032 Marburg, Germany
Email:
batzies@web.de
DOI:
https://doi.org/10.1090/S0002-9939-07-08186-5
Keywords:
Arrangements
Received by editor(s):
July 27, 2001
Received by editor(s) in revised form:
January 23, 2005
Published electronically:
June 19, 2007
Dedicated:
This paper is dedicated to Julia.
Communicated by:
Ronald A. Fintushel
Article copyright:
© Copyright 2007
American Mathematical Society