Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the characteristic polynomial of the almost Mathieu operator


Authors: Michael P. Lamoureux and James A. Mingo
Journal: Proc. Amer. Math. Soc. 135 (2007), 3205-3215
MSC (2000): Primary 47B39; Secondary 47B15, 46L05
DOI: https://doi.org/10.1090/S0002-9939-07-08830-2
Published electronically: May 14, 2007
MathSciNet review: 2322751
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A_\theta$ be the rotation C*-algebra for angle $ \theta$. For $ \theta = p/q$ with $ p$ and $ q$ relatively prime, $ A_\theta$ is the sub-C*-algebra of $ M_q(C(\mathbb{ T}^2))$ generated by a pair of unitaries $ u$ and $ v$ satisfying $ uv = e^{2 \pi i \theta} v u$. Let

$\displaystyle h_{\theta, \lambda} = u + u^{-1} + \lambda/2(v + v^{-1})$

be the almost Mathieu operator. By proving an identity of rational functions we show that for $ q$ even, the constant term in the characteristic polynomial of $ h_{\theta, \lambda}$ is $ (-1)^{q/2}(1 + (\lambda/2)^q) - (z_1^q + z_1^{-q} + (\lambda/2)^q(z_2^q + z_2^{-q}))$.


References [Enhancements On Off] (What's this?)

  • [A$ _1$] W. Arveson, Improper Filtrations for C*-algebras: spectra of unilateral tridiagonal operators, Acta Sci. Math (Szeged), 57 (1993), 11-24.MR 1243265 (94i:46071)
  • [A$ _2$] W. Arveson, C*-algebras and numerical linear algebra, J. Functional Analysis, 122 (1994), 333-360. MR 1276162 (95i:46083)
  • [AJ] A. Avila, S. Jitomirskaya, The Ten Martini Problem, Ann. of Math. to appear, preprint: math.DS/0503363.
  • [AK] A. Avila, R. Krikorian, Reducibility or non-uniform hyperbolicity for quasi-periodic schrodinger co-cycles, Ann. of Math. to appear, preprint: math.DS/0306382.
  • [AVMS] J. Avron, P. H. M. van Mouche, B. Simon, On the Measure of the Spectrum for the Almost Mathieu Operator, Comm. Math. Phy. 132 (1990) 103-118. MR 1069202 (92d:39014a)
  • [BS] J. Bellissard and B. Simon, Cantor spectrum for the Almost Mathieu Operator, J. Functional Analysis 48, (1982) 408-419. MR 0678179 (84h:81019)
  • [B] F-P. Boca, Rotation C*-algebras and Almost Mathieu Operators, Theta, Bucharest, 2001. MR 1895184 (2003e:47063)
  • [CEY] M.-D. Choi, G. A. Elliott, and N. Yui, Gauss Polynomials and the rotation algebras, Invent. Math. 99, (1990), 225 - 246. MR 1031901 (91b:46067)
  • [H] D. R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phy. Rev. B, 14 (1976) 2239-2249.
  • [L] M. Lamoureux, Reflections on the almost Mathieu operator, Integral Equations and Operator Theory 28 (1997), 45 - 59.MR 1446830 (98d:47068)
  • [LT] Y. Last, Zero Measure Spectrum for the Almost Mathieu Operator, Comm. Math. Phy., 164 (1994) 421-432.MR 1289331 (95f:47096)
  • [P] J. Puig, Cantor spectrum for the almost mathieu operator, Comm. Math. Phy. 244 (2004), 297-234. MR 2031032 (2004k:11129)
  • [R] T. J. Rivlin, Chebyshev Polynomials, 2nd ed., Wiley, 1990.MR 1060735 (92a:41016)
  • [S] J. J. Sylvester, On a remarkable modification of Sturm's Theorem, Phil. Mag., 5 (1853), 446 - 456 (also pp. 609 - 619 in Mathematical Papers, vol. I, Cambridge University Press, 1904).
  • [T] M. Toda, Theory of Nonlinear Lattices, $ 2^{{\it nd}}$ ed., Springer Series in Solid-State Sciences, vol. 20, Springer-Verlag, Berlin, (1989). MR 0971987 (89h:58082)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47B39, 47B15, 46L05

Retrieve articles in all journals with MSC (2000): 47B39, 47B15, 46L05


Additional Information

Michael P. Lamoureux
Affiliation: Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2T 1A1
Email: mikel@math.ucalgary.ca

James A. Mingo
Affiliation: Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario, Canada K7L 3N6
Email: mingo@mast.queensu.ca

DOI: https://doi.org/10.1090/S0002-9939-07-08830-2
Received by editor(s): April 3, 2006
Received by editor(s) in revised form: June 19, 2006
Published electronically: May 14, 2007
Additional Notes: Research supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society