Semiprime smash products and -stable prime radicals for PI-algebras

Authors:
V. Linchenko and S. Montgomery

Journal:
Proc. Amer. Math. Soc. **135** (2007), 3091-3098

MSC (2000):
Primary 16W30, 16N20, 16R99, 16S40

Published electronically:
June 20, 2007

MathSciNet review:
2322738

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Assume that is a finite-dimensional Hopf algebra over a field and that is an -module algebra satisfying a polynomial identity (PI). We prove that if is semisimple and is -semiprime, then is semiprime. If is cosemisimple, we show that the prime radical of is -stable.

**[A]**S. A. Amitsur,*A generalization of Hilbert’s Nullstellensatz*, Proc. Amer. Math. Soc.**8**(1957), 649–656. MR**0087644**, 10.1090/S0002-9939-1957-0087644-9**[B]**G. M. Bergman, On Jacobson radicals of graded rings, preprint, UC Berkeley, 1975.**[Br]**A. Braun, Hopf algebra versions of some classical finite group action theorems, preprint (1991, revised 2005).**[CF]**Miriam Cohen and Davida Fishman,*Hopf algebra actions*, J. Algebra**100**(1986), no. 2, 363–379. MR**840582**, 10.1016/0021-8693(86)90082-7**[CM]**M. Cohen and S. Montgomery,*Group-graded rings, smash products, and group actions*, Trans. Amer. Math. Soc.**282**(1984), no. 1, 237–258. MR**728711**, 10.1090/S0002-9947-1984-0728711-4**[EG]**Pavel Etingof and Shlomo Gelaki,*On finite-dimensional semisimple and cosemisimple Hopf algebras in positive characteristic*, Internat. Math. Res. Notices**16**(1998), 851–864. MR**1643702**, 10.1155/S107379289800052X**[H]**I. N. Herstein,*Noncommutative Rings*, 2nd Edition, MAA, 1996.**[J]**Nathan Jacobson,*Structure of rings*, American Mathematical Society Colloquium Publications, Vol. 37. Revised edition, American Mathematical Society, Providence, R.I., 1964. MR**0222106****[La]**Richard Gustavus Larson,*Characters of Hopf algebras*, J. Algebra**17**(1971), 352–368. MR**0283054****[LaR]**Richard G. Larson and David E. Radford,*Semisimple cosemisimple Hopf algebras*, Amer. J. Math.**110**(1988), no. 1, 187–195. MR**926744**, 10.2307/2374545**[LaR2]**Richard G. Larson and David E. Radford,*Finite-dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple*, J. Algebra**117**(1988), no. 2, 267–289. MR**957441**, 10.1016/0021-8693(88)90107-X**[L]**V. Linchenko,*Nilpotent subsets of Hopf module algebras*, Groups, rings, Lie and Hopf algebras (St. John’s, NF, 2001) Math. Appl., vol. 555, Kluwer Acad. Publ., Dordrecht, 2003, pp. 121–127. MR**1995055****[LMS]**V. Linchenko, S. Montgomery, and L. W. Small,*Stable Jacobson radicals and semiprime smash products*, Bull. London Math. Soc.**37**(2005), no. 6, 860–872. MR**2186719**, 10.1112/S0024609305004662**[Lo]**Christian Lomp,*When is a smash product semiprime? A partial answer*, J. Algebra**275**(2004), no. 1, 339–355. MR**2047452**, 10.1016/j.jalgebra.2003.07.017**[M]**Susan Montgomery,*Hopf algebras and their actions on rings*, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. MR**1243637****[M2]**S. Montgomery,*Primitive ideals and Jacobson radicals in Hopf Galois extensions*, Algebraic structures and their representations, Contemp. Math., vol. 376, Amer. Math. Soc., Providence, RI, 2005, pp. 333–344. MR**2147033**, 10.1090/conm/376/06969**[MS]**S. Montgomery and H.-J. Schneider,*Prime ideals in Hopf Galois extensions*, Israel J. Math.**112**(1999), 187–235. MR**1715517**, 10.1007/BF02773482**[P]**Donald S. Passman,*Infinite crossed products*, Pure and Applied Mathematics, vol. 135, Academic Press, Inc., Boston, MA, 1989. MR**979094****[SvO]**S. Skryabin and F. van Oystaeyen, The Goldie theorem for -semiprime algebras, J. Algebra 305 (2006), 292-320.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
16W30,
16N20,
16R99,
16S40

Retrieve articles in all journals with MSC (2000): 16W30, 16N20, 16R99, 16S40

Additional Information

**V. Linchenko**

Affiliation:
Yerakhtur, Shilovsky District, Ryazansky Region, Russia 391534

Email:
linchenk@mail.ru

**S. Montgomery**

Affiliation:
Department of Mathematics, University of Southern California, Los Angeles, California 90089-1113

Email:
smontgom@math.usc.edu

DOI:
https://doi.org/10.1090/S0002-9939-07-08849-1

Received by editor(s):
March 6, 2006

Received by editor(s) in revised form:
July 15, 2006

Published electronically:
June 20, 2007

Additional Notes:
The second author was supported by NSF grant DMS-0401399.

Communicated by:
Martin Lorenz

Article copyright:
© Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.