Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Rogers-Ramanujan continued fraction and a quintic iteration for $ 1/\pi$


Authors: Heng Huat Chan, Shaun Cooper and Wen-Chin Liaw
Journal: Proc. Amer. Math. Soc. 135 (2007), 3417-3424
MSC (2000): Primary 11Y60; Secondary 11F20, 11F27, 33E05
DOI: https://doi.org/10.1090/S0002-9939-07-09031-4
Published electronically: July 3, 2007
MathSciNet review: 2336553
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Properties of the Rogers-Ramanujan continued fraction are used to obtain a formula for calculating $ 1/\pi$ with quintic convergence.


References [Enhancements On Off] (What's this?)

  • 1. G. E. Andrews and B. C. Berndt, Ramanujan's Lost Notebook. Part I, Springer, New York, 2005. MR 2135178 (2005m:11001)
  • 2. B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991. MR 1117903 (92j:01069)
  • 3. B. C. Berndt, Ramanujan's Notebooks, Part V, Springer-Verlag, New York, 1998. MR 1486573 (99f:11024)
  • 4. B. C. Berndt, Number Theory in the Spirit of Ramanujan, American Mathematical Society, Providence, RI, 2006. MR 2246314
  • 5. B. C. Berndt and R. A. Rankin, Ramanujan: Letters and Commentary, American Mathematical Society, Providence, RI, 1995; London Mathematical Society, London, 1995. MR 1353909 (97c:01034)
  • 6. J. M. Borwein and P. B. Borwein, Pi and the AGM: A study in analytic number theory and computational complexity, Wiley, New York, 1987. MR 877728 (89a:11134)
  • 7. J. M. Borwein and P. B. Borwein, Approximating $ \pi$ with Ramanujan's modular equations, Rocky Mountain J. Math. 19 (1989) 93-102. MR 1016163 (91a:11072)
  • 8. J. M. Borwein, P. B. Borwein and D. H. Bailey, Ramanujan, modular equations, and approximations to pi, or How to compute one billion digits of pi, Amer. Math. Monthly 96 (1989), no. 3, 201-219. MR 991866 (90d:11143)
  • 9. J. M. Borwein and F. G. Garvan, Approximations to $ \pi$ via the Dedekind eta function, in Organic Mathematics, J. Borwein, P. Borwein, L. Jörgenson and R. Corless, eds., American Mathematical Society, Providence, RI, 1997, pp. 89-115. MR 1483915 (98j:11030)
  • 10. H. H. Chan, Ramanujan's elliptic functions to alternative bases and approximations to $ \pi$, in Number Theory for the Millennium, I, M. A. Bennett, B. C. Berndt, N. Boston, H. G. Diamond, A. J. Hildebrand and W. Philipp, eds., A. K. Peters, Natick, MA, 2002, pp. 197-213. MR 1956226 (2003k:11194)
  • 11. H. H. Chan and K. P. Loo, Ramanujan's cubic continued fraction revisited, Acta Arith., 126 (2007), no. 4, 305-313.
  • 12. J. M. Dobbie, A simple proof of some partition formulae of Ramanujan's, Quart. J. Math. Oxford (2) 6 (1955) 193-196. MR 0072896 (17:348e)
  • 13. W. Duke, Continued fractions and modular functions, Bull. Amer. Math. Soc. (New Series) 42 (2005) 137-162. MR 2133308 (2006c:11042)
  • 14. M. Hirschhorn, A simple proof of an identity of Ramanujan, J. Austral. Math. Soc. Ser. A 34 (1983) 31-35. MR 683175 (84h:10067)
  • 15. M. Hirschhorn, An identity of Ramanujan, and applications, in $ q$-series from a Contemporary Perspective, M. E. H. Ismail and D. Stanton, eds., American Mathematical Society, Providence, RI, 2000, pp. 229-234. MR 1768930 (2001f:11180)
  • 16. S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957. MR 0099904 (20:6340)
  • 17. S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988. MR 947735 (89j:01078)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11Y60, 11F20, 11F27, 33E05

Retrieve articles in all journals with MSC (2000): 11Y60, 11F20, 11F27, 33E05


Additional Information

Heng Huat Chan
Affiliation: Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543
Email: matchh@nus.edu.sg

Shaun Cooper
Affiliation: Institute of Information and Mathematical Sciences, Massey University–Albany, Private Bag 102904, North Shore Mail Centre, Auckland, New Zealand
Email: s.cooper@massey.ac.nz

Wen-Chin Liaw
Affiliation: Department of Mathematics, National Chung Cheng University, Minhsiung, Chiayi 621, Taiwan, Republic of China
Email: wcliaw@math.ccu.edu.tw

DOI: https://doi.org/10.1090/S0002-9939-07-09031-4
Received by editor(s): December 9, 2005
Published electronically: July 3, 2007
Additional Notes: The third author is grateful for the support from the National Science Council of Taiwan, Republic of China, through Grant NSC95-2115-M-194-012.
Communicated by: Jonathan M. Borwein
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society