Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Compact quantum group actions on C*-algebras and invariant derivations


Authors: Raluca Dumitru and Costel Peligrad
Journal: Proc. Amer. Math. Soc. 135 (2007), 3977-3984
MSC (2000): Primary 46L57, 20G42; Secondary 81T99
DOI: https://doi.org/10.1090/S0002-9939-07-09011-9
Published electronically: July 27, 2007
MathSciNet review: 2341948
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We define the notion of invariant derivation of a C*-algebra under a compact quantum group action and prove that in certain conditions, such derivations are generators of one parameter automorphism groups.


References [Enhancements On Off] (What's this?)

  • 1. S. Baaj and G. Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de $ C\sp *$-algèbres, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 4, 425-488, MR1235438 (94e:46127). MR 1235438 (94e:46127)
  • 2. J. Bichon, A. de Rijdt, S. Vaes, Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Commun. Math. Phys., to appear. MR 2202309 (2007a:46072)
  • 3. F. Boca, Ergodic actions of compact matrix pseudogroups on $ C\sp *$-algebras, Recent advances in operator algebras (Orléans, 1992), Astérisque No. 232, (1995), 93-109, MR1372527 (97d:46075). MR 1372527 (97d:46075)
  • 4. O. Bratteli and D. Robinson, Operator algebras and quantum statistical mechanics. I, Springer-Verlag, New York-Heidelberg-Berlin (1979). MR 611508 (82k:82013)
  • 5. O. Bratteli, Derivations, dissipations and group actions on C*-algebras, Springer-Verlag Lecture notes Nr.1229 (1986). MR 871870 (88e:46050)
  • 6. F. Goodman and P. E. T. Jørgensen, Unbounded derivations commuting with compact group actions, Comm. Math. Phys. 82 (1981/82), no. 3, 399-405, MR0641770 (83b:46083). MR 641770 (83b:46083)
  • 7. C. Peligrad, Derivations of C*-algebras that are invariant under an automorphism group, In Operator Theory: Adv. Appl. 6 Birkhäuser, Basel-Boston, 181-193 (1982). MR 685463 (84g:46100b)
  • 8. P. Podles, Symmetries of quantum spaces. Subgroups and quotient spaces of quantum $ {\rm SU}(2)$ and $ {\rm SO}(3)$ groups, Comm. Math. Phys. 170 (1995), no. 1, 1-20, MR1331688 (96j:58013). MR 1331688 (96j:58013)
  • 9. S. Sakai, On one-parameter groups of $ \ast$-automorphisms on operator algebras and the corresponding unbounded derivations, Amer. J. Math. 98 (1976), 427-440 MR 0412824 (54:945)
  • 10. S. Wang, Ergodic actions of universal quantum groups on operator algebras, Comm. Math. Phys. 203 (1999), no. 2, 481-498, MR1697607 (2000j:46128). MR 1697607 (2000j:46128)
  • 11. S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), no. 4, 613-665, MR0901157 (88m:46079). MR 901157 (88m:46079)
  • 12. S. L. Woronowicz, Compact quantum groups, Quantum Symmetries, Proceedings of the Les Houches summer school (1995), North Holland, Amsterdam (1998), 845-884. MR 1616348 (99m:46164)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L57, 20G42, 81T99

Retrieve articles in all journals with MSC (2000): 46L57, 20G42, 81T99


Additional Information

Raluca Dumitru
Affiliation: Department of Mathematics, University of Cincinnati, Cincinnati, Ohio; and Institute of Mathematics of the Romanian Academy, Bucharest, Romania
Email: dumitrra@email.uc.edu

Costel Peligrad
Affiliation: Department of Mathematics, University of Cincinnati, Cincinnati, Ohio; and Institute of Mathematics of the Romanian Academy, Bucharest, Romania
Email: costel.peligrad@UC.Edu

DOI: https://doi.org/10.1090/S0002-9939-07-09011-9
Received by editor(s): March 8, 2006
Received by editor(s) in revised form: November 25, 2006
Published electronically: July 27, 2007
Additional Notes: This research was supported by the Taft Foundation. The first author was supported by a Taft Advanced Graduate Fellowship and by a Taft Graduate Enrichment Award. The second author was supported by a Taft Research Travel Grant.
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society