Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The global attractivity of the rational difference equation $ y_n=A+\left(\frac{y_{n-k}}{y_{n-m}}\right)^p$


Authors: Kenneth S. Berenhaut, John D. Foley and Stevo Stevic
Journal: Proc. Amer. Math. Soc. 136 (2008), 103-110
MSC (2000): Primary 39A10, 39A11
DOI: https://doi.org/10.1090/S0002-9939-07-08860-0
Published electronically: September 24, 2007
MathSciNet review: 2350394
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper studies the behavior of positive solutions of the recursive equation

$\displaystyle y_n=A+\left(\frac{y_{n-k}}{y_{n-m}}\right)^p,\quad n=0,1,2,\ldots,$      

with $ y_{-s},y_{-s+1}, \ldots, y_{-1} \in (0, \infty)$ and $ k,m \in \{1,2,3,4,\ldots\}$, where $ s=\max\{k,m\}$. We prove that if $ \mathrm{gcd}(k,m) = 1$, and $ p\leq \min\{1,(A+1)/2\}$, then $ y_n$ tends to $ A+1$. This complements several results in the recent literature, including the main result in K. S.  Berenhaut, J. D. Foley and S. Stevic, The global attractivity of the rational difference equation $ y_{n}=1+\frac{y_{n-k}}{y_{n-m}}$, Proc. Amer. Math. Soc., 135 (2007) 1133-1140.


References [Enhancements On Off] (What's this?)

  • 1. R. M. ABU-SARIS AND R. DEVAULT, Global stability of $ y_{n+1}=A+\frac{y_n}{y_{n-k}},$ Appl. Math. Lett. 16 (2) (2003), 173-178. MR 1962312 (2004c:39037)
  • 2. A. M. AMLEH, E. A. GROVE, G. LADAS AND D. A. GEORGIOU, On the recursive sequence $ y_{n+1}=\alpha+\frac {y_{n-1}}{y_n},$ J. Math. Anal. Appl. 233 (1999), 790-798. MR 1689579 (2000f:39002)
  • 3. K. S. BERENHAUT, J. D. FOLEY AND S. STEVIC, The global attractivity of the rational difference equation $ y_{n}=1+\frac{y_{n-k}}{y_{n-m}}$, Proc. Amer. Math. Soc., 135 (2007), 1133-1140. MR 2262916 (2007f:39006)
  • 4. K. S. BERENHAUT AND S. STEVIC, A note on the difference equation $ x_{n+1}=\frac1{x_nx_{n-1}}+\frac1{x_{n-3}x_{n-4}},$ J. Differ. Equations Appl. 11 (14) (2005), 1225-1228. MR 2182249
  • 5. K. S. BERENHAUT AND S. STEVIC, On Positive Nonoscillatory Solutions of the Difference Equation $ x_{n+1}=\alpha + \frac{{x_{n-k}}^p}{{x_n}^p}$, J. Differ. Equations Appl., in press (2005).
  • 6. L. BERG, Asymptotische Darstellungen und Entwicklungen, Dt. Verlag Wiss., Berlin, 1968. MR 0241873 (39:3210)
  • 7. L. BERG, On the asymptotics of nonlinear difference equations, Z. Anal. Anwendungen 21, No.4, (2002), 1061-1074. MR 1957315 (2004b:39015)
  • 8. L. BERG, Inclusion theorems for non-linear difference equations with applications, J. Differ. Equations Appl. 10 (4) (2004), 399-408. MR 2047219 (2004m:39007)
  • 9. L. BERG, Corrections to ``Inclusion theorems for non-linear difference equations with applications," from [3], J. Differ. Equations Appl. 11 (2) (2005), 181-182. MR 2114324 (2005h:39007)
  • 10. L. BERG AND L. V. WOLFERSDORF, On a class of generalized autoconvolution equations of the third kind, Z. Anal. Anwendungen 24, No. 2 (2005), 217-250. MR 2174021 (2006j:45020)
  • 11. R. DEVAULT, C. KENT AND W. KOSMALA, On the recursive sequence $ x_{n+1}=p+\frac{x_{n-k}}{x_n},$ J. Differ. Equations Appl. 9 (8) (2003), 721-730. MR 1992905 (2004f:39014)
  • 12. R. DEVAULT, G. LADAS AND S.W. SCHULTZ, On the recursive sequence $ x_{n+1}=\frac{A}{x_nx_{n-1}}+\frac 1{x_{n-3}x_{n-4}},$ J. Differ. Equation Appl. 6 (4) (2000), 481-483. MR 1785161
  • 13. H. EL-METWALLY, E. A. GROVE, G. LADAS, AND H. D. VOULOV, On the global attractivity and the periodic character of some difference equations, J. Diff. Eqn. Appl. 7 (2001), 837-850. MR 1870725 (2003e:39006)
  • 14. H. M. EL-OWAIDY, A. M. AHMED AND M. S. MOUSA, On asymptotic behaviour of the difference equation $ x_{n+1}=\alpha+\frac {x^p_{n-1}}{x^p_n},$ J. Appl. Math. $ \&$ Computing 12 (1-2) (2003), 31-37. MR 1976801 (2004a:39011)
  • 15. E. A. GROVE, AND G. LADAS, Periodicities in Nonlinear Difference Equations, Chapman & Hall/CRC Press, Boca Raton, (2004). MR 2193366 (2006j:39002)
  • 16. V. KOCIC AND G. LADAS. Global behavior of nonlinear difference equations of higher order with applications, Mathematics and its Applications, 256. Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1247956 (94k:39005)
  • 17. W. T. PATULA AND H. D. VOULOV. On the oscillation and periodic character of a third order rational difference equation. Proc. Amer. Math. Soc. 131 (2003), no. 3, 905-909. MR 1937429 (2003j:39008)
  • 18. S. STEVIC, Asymptotic behaviour of a sequence defined by iteration with applications, Colloq. Math. 93 (2) (2002), 267-276. MR 1930804 (2003k:39012)
  • 19. S. STEVIC, Asymptotic behaviour of a nonlinear difference equation, Indian J. Pure Appl. Math. 34 (12) (2003), 1681-1687. MR 2030114 (2005a:39029)
  • 20. S. STEVIC, On the recursive sequence $ x_{n+1}=\frac A{\prod_{i=0}^k x_{n-i}}+ \frac 1{\prod_{j=k+2}^{2(k+1)}x_{n-j}},$ Taiwanese J. Math. 7 (2) (2003), 249-259. MR 1978014 (2004c:39030)
  • 21. S. STEVIC, A note on periodic character of a difference equation, J. Differ. Equations Appl. 10 (10) (2004), 929-932. MR 2079642 (2005b:39011)
  • 22. S. STEVIC, Some open problems and conjectures on difference equations, http://www.mi.sanu.ac.yu, April 29, 2004.
  • 23. S. STEVIC, On the recursive sequence $ x_{n+1}=\alpha+\frac{x^p_{n-1}}{x_n^p},$ J. Appl. Math $ \&$ Computing 18 (1-2) (2005), 229-234. MR 2137703 (2005m:39032)
  • 24. S. STEVIC, Global stability and asymptotics of some classes of rational difference equations, J. Math. Anal. Appl. 316 (2006), 60-68. MR 2201749 (2006i:39026)
  • 25. S. STEVIC, On positive solutions of a $ (k+1)$-th order difference equation, Appl. Math. Lett. 19 (5) (2006), 427-431. MR 2213143

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 39A10, 39A11

Retrieve articles in all journals with MSC (2000): 39A10, 39A11


Additional Information

Kenneth S. Berenhaut
Affiliation: Department of Mathematics, Wake Forest University, Winston-Salem, North Carolina 27109
Email: berenhks@wfu.edu

John D. Foley
Affiliation: Department of Mathematics, Wake Forest University, Winston-Salem, North Carolina 27109
Email: folejd4@wfu.edu

Stevo Stevic
Affiliation: Mathematical Institute of The Serbian Academy of Science, Knez Mihailova 35/I 11000 Beograd, Serbia
Email: sstevic@ptt.yu, sstevo@matf.bg.ac.yu

DOI: https://doi.org/10.1090/S0002-9939-07-08860-0
Keywords: Rational difference equation, stability.
Received by editor(s): April 18, 2006
Received by editor(s) in revised form: July 31, 2006
Published electronically: September 24, 2007
Additional Notes: The first author acknowledges financial support from a Sterge Faculty Fellowship.
Communicated by: Carmen C. Chicone
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society