Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Universality of Rank 6 Plücker relations and Grassmann cone preserving maps


Authors: Alex Kasman, Kathryn Pedings, Amy Reiszl and Takahiro Shiota
Journal: Proc. Amer. Math. Soc. 136 (2008), 77-87
MSC (2000): Primary 14M15, 15A75
DOI: https://doi.org/10.1090/S0002-9939-07-09122-8
Published electronically: October 11, 2007
MathSciNet review: 2350391
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Plücker relations define a projective embedding of the Grassmann variety $ Gr(p,n)$. We give another finite set of quadratic equations which defines the same embedding, and whose elements all have rank 6. This is achieved by constructing a certain finite set of linear maps $ \bigwedge^pk^n\to\bigwedge^2k^4$, and pulling back the unique Plücker relation on $ \bigwedge^2k^4$. We also give a quadratic equation depending on $ (p+2)$ parameters having the same properties.


References [Enhancements On Off] (What's this?)

  • 1. S. Abeasis, Advances in Math. 36 (1980) 277-282 MR 577305 (81m:14035)
  • 2. M.J. Bergvelt and A.P.E. ten Kroode, Pacific J. Math. 171 (1995), no. 1, 23-88 MR 1362978 (97c:58061)
  • 3. N. Bourbaki, Algèbre. Chapitre III: Algèbre multilinéaire, Actualités Sci. Ind., no. 1044. Hermann et Cie., Paris, 1948
  • 4. C.C. Chevalley, The algebraic theory of spinors, Columbia University Press, New York, 1954 MR 0060497 (15:678d)
  • 5. S. Duzhin, Decomposable skew-symmetric functions, Moscow Math J. 3 (2003) no. 3, 881-888 MR 2078565 (2005f:15006)
  • 6. M. Gekhtman and A. Kasman, On KP generators and the geometry of the HBDE, Journal of Geometry and Physics 56 (2006) 282-309. MR 2173898 (2006f:37097)
  • 7. P. Griffiths and J. Harris, Principles of algebraic geometry, Reprint of the 1978 original, Wiley, New York, 1994 MR 1288523 (95d:14001)
  • 8. W.V.D. Hodge and D. Pedoe, Methods of algebraic geometry. Vol. II, Reprint of the 1952 original, Cambridge Univ. Press, Cambridge, 1994 MR 1288306 (95d:14002b)
  • 9. S.L. Kleiman and D. Laksov, American Mathematical Monthly 79 (1972) 1061-1082 MR 0323796 (48:2152)
  • 10. I. Krichever, ``Characterizing Jacobians via trisecants of the Kummer Variety'', math.AG/0605625
  • 11. I.G. Macdonald, Symmetric functions and Hall polynomials, 2nd Ed., Oxford University Press, Oxford, 1995 MR 1354144 (96h:05207)
  • 12. T. Miwa, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982) no. 1, 9-12 MR 649054 (83f:58042)
  • 13. S. Mukai, in Algebraic geometry and related topics (Inchon, 1992), 19-40, Internat. Press, Cambridge, MA, 1993 MR 1285374 (95i:14032)
  • 14. K. Ranestad and F.-O. Schreyer, Varieties of sums of powers, J. Reine Angew. Math. 525 (2000), 147-181 MR 1780430 (2001m:14009)
  • 15. M. Sato and Y. Sato, in H. Fujita, P.D. Lax, G. Strang (eds) Nonlinear partial differential equations in applied science (Tokyo, 1982), 259-271, North-Holland, Amsterdam, 1983 MR 730231 (84m:35002)
  • 16. R. Stanley, Enumerative combinatorics, vol. 2, Cambridge Univ. Press, Cambridge, UK, 1999 MR 1676282 (2000k:05026)
  • 17. K. Takasaki and T. Takebe, Rev. Math. Phys. 7 (1995) 743-808 MR 1346289 (97f:58073)
  • 18. R. Westwick, Linear and Multilinear Algebra 2 (1974/75), 257-268 MR 0429961 (55:2969)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14M15, 15A75

Retrieve articles in all journals with MSC (2000): 14M15, 15A75


Additional Information

Alex Kasman
Affiliation: Department of Mathematics, College of Charleston, 66 George Street, Charleston, South Carolina 29424
Email: kasman@cofc.edu

Kathryn Pedings
Affiliation: Department of Mathematics, College of Charleston, 66 George Street, Charleston, South Carolina 29424
Email: kepedings@edisto.cofc.edu

Amy Reiszl
Affiliation: Department of Mathematics, College of Charleston, 66 George Street, Charleston, South Carolina 29424
Email: amreiszl@edisto.cofc.edu

Takahiro Shiota
Affiliation: Department of Mathematics, Kyoto University, Kyoto, 606-8502, Japan

DOI: https://doi.org/10.1090/S0002-9939-07-09122-8
Received by editor(s): September 30, 2005
Received by editor(s) in revised form: January 31, 2007
Published electronically: October 11, 2007
Communicated by: Michael Stillman
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society