Cutoff resolvent estimates and the semilinear Schrödinger equation

Author:
Hans Christianson

Journal:
Proc. Amer. Math. Soc. **136** (2008), 3513-3520

MSC (2000):
Primary 35Q55

Published electronically:
June 10, 2008

MathSciNet review:
2415035

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper shows how abstract resolvent estimates imply local smoothing for solutions to the Schrödinger equation. If the resolvent estimate has a loss when compared to the optimal, non-trapping estimate, there is a corresponding loss in regularity in the local smoothing estimate. As an application, we apply well-known techniques to obtain well-posedness results for the semi-linear Schrödinger equation.

**[BoTz]**Jean-Marc Bouclet and Nikolay Tzvetkov,*Strichartz estimates for long range perturbations*, Amer. J. Math.**129**(2007), no. 6, 1565–1609. MR**2369889**, 10.1353/ajm.2007.0039**[Bur]**N. Burq,*Smoothing effect for Schrödinger boundary value problems*, Duke Math. J.**123**(2004), no. 2, 403–427 (English, with English and French summaries). MR**2066943**, 10.1215/S0012-7094-04-12326-7**[BGT1]**N. Burq, P. Gérard, and N. Tzvetkov,*Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds*, Amer. J. Math.**126**(2004), no. 3, 569–605. MR**2058384****[BGT2]**N. Burq, P. Gérard, and N. Tzvetkov,*On nonlinear Schrödinger equations in exterior domains*, Ann. Inst. H. Poincaré Anal. Non Linéaire**21**(2004), no. 3, 295–318 (English, with English and French summaries). MR**2068304**, 10.1016/S0294-1449(03)00040-4**[Caz]**Thierry Cazenave,*Semilinear Schrödinger equations*, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR**2002047****[Chr1]**Hans Christianson,*Semiclassical non-concentration near hyperbolic orbits*, J. Funct. Anal.**246**(2007), no. 2, 145–195. MR**2321040**, 10.1016/j.jfa.2006.09.012**[Chr2]**CHRISTIANSON, H. Quantum Monodromy and Non-concentration Near Semi-hyperbolic Orbits, preprint.`http://www.math.mit.edu/hans/papers/qmnc.pdf`**[Chr3]**CHRISTIANSON, H. Dispersive Estimates for Manifolds with One Trapped Orbit. To appear in*Commun. PDE*.`http://www.math.mit.edu/hans/papers/sm.pdf`**[Doi]**Shin-ichi Doi,*Smoothing effects of Schrödinger evolution groups on Riemannian manifolds*, Duke Math. J.**82**(1996), no. 3, 679–706. MR**1387689**, 10.1215/S0012-7094-96-08228-9**[HTW]**Andrew Hassell, Terence Tao, and Jared Wunsch,*Sharp Strichartz estimates on nontrapping asymptotically conic manifolds*, Amer. J. Math.**128**(2006), no. 4, 963–1024. MR**2251591****[NoZw]**Stéphane Nonnenmacher and Maciej Zworski,*Quantum decay rates in chaotic scattering*, Seminaire: Equations aux Dérivées Partielles. 2005–2006, Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau, 2006, pp. Exp. No. XXII, 8. MR**2276087****[Vod]**Georgi Vodev,*Exponential bounds of the resolvent for a class of noncompactly supported perturbations of the Laplacian*, Math. Res. Lett.**7**(2000), no. 2-3, 287–298. MR**1764323**, 10.4310/MRL.2000.v7.n3.a4

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35Q55

Retrieve articles in all journals with MSC (2000): 35Q55

Additional Information

**Hans Christianson**

Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

Email:
hans@math.mit.edu

DOI:
https://doi.org/10.1090/S0002-9939-08-09290-3

Received by editor(s):
June 29, 2007

Published electronically:
June 10, 2008

Additional Notes:
This research was partially conducted during the period the author was employed by the Clay Mathematics Institute as a Liftoff Fellow.

Communicated by:
Hart F. Smith

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.