Improvements of lower bounds for the least common multiple of finite arithmetic progressions

Authors:
Shaofang Hong and Yujuan Yang

Journal:
Proc. Amer. Math. Soc. **136** (2008), 4111-4114

MSC (2000):
Primary 11A05

Published electronically:
July 17, 2008

MathSciNet review:
2431021

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let and be positive integers such that . Let for . We prove that if . This improves the lower bound of obtained previously by Farhi, Hong and Feng.

**1.**Tom M. Apostol,*Introduction to analytic number theory*, Springer-Verlag, New York-Heidelberg, 1976. Undergraduate Texts in Mathematics. MR**0434929****2.**Gennady Bachman and Troy Kessler,*On divisibility properties of certain multinomial coefficients. II*, J. Number Theory**106**(2004), no. 1, 1–12. MR**2029778**, 10.1016/j.jnt.2003.12.001**3.**Bakir Farhi,*Minorations non triviales du plus petit commun multiple de certaines suites finies d’entiers*, C. R. Math. Acad. Sci. Paris**341**(2005), no. 8, 469–474 (French, with English and French summaries). MR**2180812**, 10.1016/j.crma.2005.09.019**4.**Bakir Farhi,*Nontrivial lower bounds for the least common multiple of some finite sequences of integers*, J. Number Theory**125**(2007), no. 2, 393–411. MR**2332595**, 10.1016/j.jnt.2006.10.017**5.**B. Green and T. Tao,*The primes contain arbitrarily long arithmetic progressions,*Ann. of Math. (2)**167**(2008), 481-548.**6.**Denis Hanson,*On the product of the primes*, Canad. Math. Bull.**15**(1972), 33–37. MR**0313179****7.**G. H. Hardy and E. M. Wright,*An introduction to the theory of numbers*, Oxford, at the Clarendon Press, 1954. 3rd ed. MR**0067125****8.**Shaofang Hong and Weiduan Feng,*Lower bounds for the least common multiple of finite arithmetic progressions*, C. R. Math. Acad. Sci. Paris**343**(2006), no. 11-12, 695–698 (English, with English and French summaries). MR**2284695**, 10.1016/j.crma.2006.11.002**9.**Shaofang Hong and Raphael Loewy,*Asymptotic behavior of eigenvalues of greatest common divisor matrices*, Glasg. Math. J.**46**(2004), no. 3, 551–569. MR**2094810**, 10.1017/S0017089504001995**10.**Kenneth Ireland and Michael Rosen,*A classical introduction to modern number theory*, 2nd ed., Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York, 1990. MR**1070716****11.**G. Myerson and J. W. Sander,*What the least common multiple divides. II*, J. Number Theory**61**(1996), no. 1, 67–84. MR**1418320**, 10.1006/jnth.1996.0138**12.**M. Nair,*On Chebyshev-type inequalities for primes*, Amer. Math. Monthly**89**(1982), no. 2, 126–129. MR**643279**, 10.2307/2320934

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
11A05

Retrieve articles in all journals with MSC (2000): 11A05

Additional Information

**Shaofang Hong**

Affiliation:
Mathematical College, Sichuan University, Chengdu 610064, People’s Republic of China

Email:
s-f.hong@tom.com, hongsf02@yahoo.com, sfhong@scu.edu.cn

**Yujuan Yang**

Affiliation:
Mathematical College, Sichuan University, Chengdu 610064, People’s Republic of China

Email:
y.j.yang@tom.com

DOI:
https://doi.org/10.1090/S0002-9939-08-09565-8

Keywords:
Arithmetic progression,
least common multiple,
lower bound.

Received by editor(s):
September 18, 2007

Published electronically:
July 17, 2008

Additional Notes:
The first author was supported in part by the Program for New Century Excellent Talents in University, Grant No. NCET-06-0785.

Communicated by:
Wen-Ching Winnie Li

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.