Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On Gromov's scalar curvature conjecture


Authors: Dmitry Bolotov and Alexander Dranishnikov
Journal: Proc. Amer. Math. Soc. 138 (2010), 1517-1524
MSC (2010): Primary 55M30; Secondary 53C23, 57N65, 55N15
DOI: https://doi.org/10.1090/S0002-9939-09-10199-5
Published electronically: December 8, 2009
MathSciNet review: 2578547
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the Gromov conjecture on the macroscopic dimension of the universal covering of a closed spin manifold with a positive scalar curvature under the following assumptions on the fundamental group.

$ 0.1$. Theorem.

Suppose that a discrete group $ \pi$ has the following properties:

$ 1$. The Strong Novikov Conjecture holds for $ \pi$.

$ 2$. The natural map $ per:ko_n(B\pi)\to KO_n(B\pi)$ is injective. Then the Gromov Macroscopic Dimension Conjecture holds true for spin $ n$-manifolds $ M$ with the fundamental groups $ \pi_1(M)$ that contain $ \pi$ as a finite index subgroup.


References [Enhancements On Off] (What's this?)

  • [Ba] A. Bartels, Squeezing and higher algebraic K-theory, $ K$-theory 28 (2003), 19-37. MR 1988817 (2004f:19006)
  • [Ber] I. Berstein, On the Lusternik-Schnirelmann category of Grassmannians. Math. Proc. Camb. Philos. Soc. 79 (1976), 129-134. MR 0400212 (53:4047)
  • [B1] D. Bolotov,
    Macroscopic dimension of $ 3$-manifolds,
    Math. Physics, Analysis and Geometry 6 (2003), 291-299. MR 1997917 (2004g:57006)
  • [B2] D. Bolotov,
    Gromov's macroscopic dimension conjecture,
    Algebraic and Geometric Topology 6 (2006), 1669-1676. MR 2253461 (2007g:57044)
  • [B3] D. Bolotov, About the macroscopic dimension of certain PSC-manifolds, Algebr. Geom. Topol. 9 (2009), 21-27. MR 2471130
  • [Br] G. Bredon, Sheaf Theory. Graduate Texts in Mathematics, 170, Springer, New York-Heidelberg-Berlin, 1997. MR 1481706 (98g:55005)
  • [CLOT] O. Cornea, G. Lupton, J. Oprea, D. Tanré, Lusternik-Schnirelmann category. Mathematical Surveys and Monographs, 103. American Mathematical Society, Providence, RI, 2003. MR 1990857 (2004e:55001)
  • [Dr] A. Dranishnikov, Cohomological approach to asymptotic dimension, Geom. Dedicata 141 (2009), no. 1, 59-86. MR 2520063
  • [DFW] A. Dranishnikov, S. Ferry, and S. Weinberger, An étale approach to the Novikov conjecture, Pure Appl. Math. 61 (2008), no. 2, 139-155. MR 2368371 (2008j:57054)
  • [DKR] A. Dranishnikov, M. Katz, and Yu. Rudyak, Small values of the Lusternik-Schnirelman category for manifolds, Geometry and Topology 12 (2008), issue 3, 1711-1728. MR 2421138 (2009f:55003)
  • [DR] A. Dranishnikov, Yu. Rudyak, On the Berstein-Švarc Theorem in dimension $ 2$. Math. Proc. Cambridge Phil. Soc. 146 (2009), no. 2, 407-413. MR 2475974 (2009k:55005)
  • [G1] M. Gromov,
    Positive curvature, macroscopic dimension, spectral gaps and higher signatures, Functional analysis on the eve of the 21st century. Vol. II, Birkhäuser, Boston, MA, 1996. MR 1389019 (98d:53052)
  • [G2] M. Gromov, Filling Riemannian manifolds, J. Diff. Geom. 18 (1983), 1-147. MR 697984 (85h:53029)
  • [GL] M. Gromov, H.B. Lawson, Jr.,
    Positive scalar curvature and the Dirac operator on complete Riemannian manifolds,
    Publ. Math. I.H.E.S. 58 (1983), 295-408. MR 0720933 (85g:58082)
  • [Ha] A. Hatcher,
    Algebraic Topology, Cambridge University Press, 2002. MR 1867354 (2002k:55001)
  • [R] J. Rosenberg,
    $ C^*$-algebras, positive scalar curvature, and the Novikov conjecture. III,
    Topology 25 (1986), 319-336. MR 842428 (88f:58141)
  • [RS] J. Rosenberg and S. Stolz,
    Metric of positive scalar curvature and connection with surgery, Surveys on Surgery Theory, vol. 2, Princeton University Press, 2001, 353-386. MR 1818778 (2002f:53054)
  • [Sv] A. Švarc, The genus of a fiber space, Amer. Math. Soc. Transl. Series 2, 55, Amer. Math. Soc., Providence, RI, 1966, 49-140.
  • [Ru] Yu. Rudyak, On Thom spectra, orientability, and cobordism, Springer-Verlag, Berlin, 1998. MR 1627486 (99f:55001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 55M30, 53C23, 57N65, 55N15

Retrieve articles in all journals with MSC (2010): 55M30, 53C23, 57N65, 55N15


Additional Information

Dmitry Bolotov
Affiliation: Verkin Institute of Low Temperature Physics, Lenina Avenue, 47, Kharkov, 631103, Ukraine
Email: bolotov@univer.kharkov.ua

Alexander Dranishnikov
Affiliation: Department of Mathematics, 358 Little Hall, University of Florida, Gainesville, Florida 32611-8105
Email: dranish@math.ufl.edu

DOI: https://doi.org/10.1090/S0002-9939-09-10199-5
Keywords: Positive scalar curvature, macroscopic dimension, connective $K$-theory, Strong Novikov Conjecture
Received by editor(s): January 28, 2009
Received by editor(s) in revised form: September 11, 2009
Published electronically: December 8, 2009
Additional Notes: This work was supported by NSF grant DMS-0604494
Communicated by: Brooke Shipley
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society