Algebraic approximation of germs of real analytic sets

Authors:
M. Ferrarotti, E. Fortuna and L. Wilson

Journal:
Proc. Amer. Math. Soc. **138** (2010), 1537-1548

MSC (2000):
Primary 14P15, 32B20, 32S05

DOI:
https://doi.org/10.1090/S0002-9939-10-10283-4

Published electronically:
January 19, 2010

MathSciNet review:
2587437

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Two subanalytic subsets of are -equivalent at a common point, say , if the Hausdorff distance between their intersections with the sphere centered at of radius goes to zero faster than . In the present paper we investigate the existence of an algebraic representative in every -equivalence class of subanalytic sets. First we prove that such a result holds for the zero-set of an analytic map when the regular points of are dense in . Moreover we present some results concerning the algebraic approximation of the image of a real analytic map under the hypothesis that .

**[Ab]**S. ABHYANKAR: On the ramification of algebraic functions.*Amer. J. Math.*, vol. 77 (1955), pp. 575-592. MR**0071851 (17:193c)****[Ar]**F. AROCA: Puiseux parametric equations of analytic sets.*Proc. Amer. Math. Soc.*, vol. 132, n. 10 (2004), pp. 3035-3045 (electronic). MR**2063125 (2005c:32032)****[BM]**E. BIERSTONE, P. MILMAN: Semianalytic and subanalytic sets.*Inst. Hautes Études Sci. Publ. Math.*, vol. 67 (1988), pp. 5-42. MR**972342 (89k:32011)****[B1]**M. BILSKI: Approximation of analytic sets by Nash tangents of higher order.*Math. Z.*, vol. 256, n. 4 (2007), pp. 705-716. MR**2308884 (2008h:32009)****[B2]**M. BILSKI: Approximation of analytic sets with proper projection by algebraic sets. arXiv:0905.1881v1[math.CV] (2009).**[FFW]**M. FERRAROTTI, E. FORTUNA AND L. WILSON: Local approximation of semialgebraic sets.*Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5)*, vol. I, n. 1 (2002), pp. 1-11. MR**1994799 (2004f:14083)****[H]**H. HIRONAKA: Stratification and flatness. In: Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 199-265. MR**0499286 (58:17187)****[KR]**K. KURDYKA, G. RABY: Densité des ensembles sous-analytiques.*Ann. Inst. Fourier (Grenoble)*, vol. 39 (1989), pp. 753-771. MR**1030848 (90k:32026)****[M]**J. MILNOR: Singular points of complex hypersurfaces. Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR**0239612 (39:969)****[TW]**D. TROTMAN, L. WILSON: Stratifications and finite determinacy.*Proc. London Math. Soc. (3)*, vol. 78, n. 2 (1999), pp. 334-368. MR**1665246 (2000h:58069)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
14P15,
32B20,
32S05

Retrieve articles in all journals with MSC (2000): 14P15, 32B20, 32S05

Additional Information

**M. Ferrarotti**

Affiliation:
Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy

Email:
ferrarotti@polito.it

**E. Fortuna**

Affiliation:
Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, I-56127 Pisa, Italy

Email:
fortuna@dm.unipi.it

**L. Wilson**

Affiliation:
Department of Mathematics, University of Hawaii, Manoa, Honolulu, Hawaii 96822

Email:
les@math.hawaii.edu

DOI:
https://doi.org/10.1090/S0002-9939-10-10283-4

Received by editor(s):
January 9, 2009

Published electronically:
January 19, 2010

Additional Notes:
This research was partially supported by M.I.U.R. and by G.N.S.A.G.A

Communicated by:
Daniel Ruberman

Article copyright:
© Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.