On the finiteness of associated primes of local cohomology modules

Author:
Pham Hung Quy

Journal:
Proc. Amer. Math. Soc. **138** (2010), 1965-1968

MSC (2010):
Primary 13D45, 13E99

Published electronically:
February 12, 2010

MathSciNet review:
2596030

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a Noetherian ring, be an ideal of and be a finitely generated -module. The aim of this paper is to show that if is the least integer such that neither nor is non-finite, then has finitely many associated primes. This combines the main results of Brodmann and Faghani and independently of Khashyarmanesh and Salarian.

**1.**M. P. Brodmann and A. Lashgari Faghani,*A finiteness result for associated primes of local cohomology modules*, Proc. Amer. Math. Soc.**128**(2000), no. 10, 2851–2853. MR**1664309**, 10.1090/S0002-9939-00-05328-4**2.**M. P. Brodmann and R. Y. Sharp,*Local cohomology: an algebraic introduction with geometric applications*, Cambridge Studies in Advanced Mathematics, vol. 60, Cambridge University Press, Cambridge, 1998. MR**1613627****3.**Winfried Bruns and Jürgen Herzog,*Cohen-Macaulay rings*, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR**1251956****4.**Craig L. Huneke and Rodney Y. Sharp,*Bass numbers of local cohomology modules*, Trans. Amer. Math. Soc.**339**(1993), no. 2, 765–779. MR**1124167**, 10.1090/S0002-9947-1993-1124167-6**5.**Mordechai Katzman,*An example of an infinite set of associated primes of a local cohomology module*, J. Algebra**252**(2002), no. 1, 161–166. MR**1922391**, 10.1016/S0021-8693(02)00032-7**6.**K. Khashyarmanesh and Sh. Salarian,*On the associated primes of local cohomology modules*, Comm. Algebra**27**(1999), no. 12, 6191–6198. MR**1726302**, 10.1080/00927879908826816**7.**Gennady Lyubeznik,*Finiteness properties of local cohomology modules (an application of 𝐷-modules to commutative algebra)*, Invent. Math.**113**(1993), no. 1, 41–55. MR**1223223**, 10.1007/BF01244301**8.**Hideyuki Matsumura,*Commutative ring theory*, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR**879273**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
13D45,
13E99

Retrieve articles in all journals with MSC (2010): 13D45, 13E99

Additional Information

**Pham Hung Quy**

Affiliation:
Department of Mathematics, FPT University (Dai Hoc FPT), 15B Pham Hung Street, Ha Noi, Vietnam

Email:
phamhungquy@gmail.com, quyph@fpt.edu.vn

DOI:
http://dx.doi.org/10.1090/S0002-9939-10-10235-4

Keywords:
Local cohomology,
associated primes.

Received by editor(s):
March 23, 2009

Received by editor(s) in revised form:
October 1, 2009

Published electronically:
February 12, 2010

Communicated by:
Bernd Ulrich

Article copyright:
© Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.