Inequivalent measures of noncompactness and the radius of the essential spectrum

Authors:
John Mallet-Paret and Roger D. Nussbaum

Journal:
Proc. Amer. Math. Soc. **139** (2011), 917-930

MSC (2010):
Primary 47H08, 46B20; Secondary 46B25, 46B45, 47A10, 47H10

DOI:
https://doi.org/10.1090/S0002-9939-2010-10511-7

Published electronically:
October 29, 2010

MathSciNet review:
2745644

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Kuratowski measure of noncompactness on an infinite dimensional Banach space assigns to each bounded set in a nonnegative real number by the formula

Further, if is any complex, infinite dimensional Banach space and is a bounded linear map, one can define , where denotes the essential spectrum of . One can also define

Our motivation for this study comes from questions concerning eigenvectors of linear and nonlinear cone-preserving maps.

**1.**R. R. Akhmerov, M. I. Kamenskiĭ, A. S. Potapov, A. E. Rodkina, and B. N. Sadovskiĭ,*Measures of noncompactness and condensing operators*, Operator Theory: Advances and Applications, vol. 55, Birkhäuser Verlag, Basel, 1992. Translated from the 1986 Russian original by A. Iacob. MR**1153247****2.**J. Appell,*Measures of noncompactness, condensing operators and fixed points: an application-oriented survey*, Fixed Point Theory**6**(2005), no. 2, 157–229. MR**2196709****3.**J. M. Ayerbe Toledano, T. Domínguez Benavides, and G. López Acedo,*Measures of noncompactness in metric fixed point theory*, Operator Theory: Advances and Applications, vol. 99, Birkhäuser Verlag, Basel, 1997. MR**1483889****4.**Józef Banaś and Kazimierz Goebel,*Measures of noncompactness in Banach spaces*, Lecture Notes in Pure and Applied Mathematics, vol. 60, Marcel Dekker, Inc., New York, 1980. MR**591679****5.**Felix E. Browder,*On the spectral theory of elliptic differential operators. I*, Math. Ann.**142**(1960/1961), 22–130. MR**0209909**, https://doi.org/10.1007/BF01343363**6.**Gabriele Darbo,*Punti uniti in trasformazioni a codominio non compatto*, Rend. Sem. Mat. Univ. Padova**24**(1955), 84–92 (Italian). MR**0070164****7.**M. Furi and A. Vignoli,*On a property of the unit sphere in a linear normed space*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**18**(1970), 333–334 (English, with Loose Russian summary). MR**0264373****8.**I. C. Gohberg and M. G. Kreĭn,*The basic propositions on defect numbers, root numbers and indices of linear operators*, Amer. Math. Soc. Transl. (2)**13**(1960), 185–264. MR**0113146****9.**Tosio Kato,*Perturbation theory for linear operators*, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR**0203473****10.**K. Kuratowski, Sur les espaces complets,*Fund. Math.***15**(1930), pp. 301-309.**11.**John Mallet-Paret and Roger D. Nussbaum,*Eigenvalues for a class of homogeneous cone maps arising from max-plus operators*, Discrete Contin. Dyn. Syst.**8**(2002), no. 3, 519–562. MR**1897866**, https://doi.org/10.3934/dcds.2002.8.519**12.**J. Mallet-Paret and R.D. Nussbaum, Inequivalent measures of noncompactness,*Ann. Mat. Pura Appl.*, to appear.**13.**J. Mallet-Paret and R.D. Nussbaum, Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index,*J. Fixed Point Theory and Appl.***7**(2010), pp. 103-143.**14.**Roger D. Nussbaum,*The radius of the essential spectrum*, Duke Math. J.**37**(1970), 473–478. MR**0264434****15.**Roger D. Nussbaum,*A generalization of the Ascoli theorem and an application to functional differential equations*, J. Math. Anal. Appl.**35**(1971), 600–610. MR**0289898**, https://doi.org/10.1016/0022-247X(71)90207-1**16.**Roger D. Nussbaum,*The fixed point index for local condensing maps*, Ann. Mat. Pura Appl. (4)**89**(1971), 217–258. MR**0312341**, https://doi.org/10.1007/BF02414948**17.**Roger D. Nussbaum,*Eigenvectors of nonlinear positive operators and the linear Kreĭn-Rutman theorem*, Fixed point theory (Sherbrooke, Que., 1980) Lecture Notes in Math., vol. 886, Springer, Berlin-New York, 1981, pp. 309–330. MR**643014****18.**B. N. Sadovskiĭ,*Limit-compact and condensing operators*, Uspehi Mat. Nauk**27**(1972), no. 1(163), 81–146 (Russian). MR**0428132****19.**František Wolf,*On the essential spectrum of partial differential boundary problems.*, Comm. Pure Appl. Math.**12**(1959), 211–228. MR**0107750**, https://doi.org/10.1002/cpa.3160120202**20.**Bertram Yood,*Properties of linear transformations preserved under addition of a completely continuous transformation*, Duke Math. J.**18**(1951), 599–612. MR**0044020**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
47H08,
46B20,
46B25,
46B45,
47A10,
47H10

Retrieve articles in all journals with MSC (2010): 47H08, 46B20, 46B25, 46B45, 47A10, 47H10

Additional Information

**John Mallet-Paret**

Affiliation:
Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912

Email:
jmp@dam.brown.edu

**Roger D. Nussbaum**

Affiliation:
Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854

Email:
nussbaum@math.rutgers.edu

DOI:
https://doi.org/10.1090/S0002-9939-2010-10511-7

Keywords:
Measure of noncompactness,
essential spectral radius,
cone map.

Received by editor(s):
September 21, 2009

Received by editor(s) in revised form:
January 16, 2010

Published electronically:
October 29, 2010

Additional Notes:
The first author was partially supported by NSF Grant DMS-0500674

The second author was partially supported by NSF Grant DMS-0701171

Communicated by:
Nigel J. Kalton

Article copyright:
© Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.