Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Characterization of subdiagonal algebras


Author: Turdebek N. Bekjan
Journal: Proc. Amer. Math. Soc. 139 (2011), 1121-1126
MSC (2010): Primary 46L51, 46L52, 47L75
DOI: https://doi.org/10.1090/S0002-9939-2010-10673-1
Published electronically: September 30, 2010
MathSciNet review: 2745664
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{M}$ be a finite von Neumann algebra with a faithful normal tracial state $ \tau,$ and let $ \mathcal{A}$ be a tracial subalgebra of $ \mathcal{M}.$ We show that $ \mathcal{A}$ has $ L^{p}$-factorization ( $ 1\leq p<\infty$) if and only if $ \mathcal{A}$ is a subdiagonal algebra. Also, we obtain some characterizations of subdiagonal algebras.


References [Enhancements On Off] (What's this?)

  • 1. W. B. Arveson,
    Analyticity in operator algebras,
    Amer. J. Math 89 (1967), 578-642. MR 0223899 (36:6946)
  • 2. T. N. Bekjan, Q. Xu,
    Riesz and Szegö type factorizations for noncommutative Hardy spaces,
    J. Operator Theory 62 (2009), 215-231. MR 2520548
  • 3. D. P. Blecher, L. E. Labuschagne,
    Logmodularity and isometries of operator algebras,
    Trans. Amer. Math. Soc. 355 (2003), 1621-1646. MR 1946408 (2004c:46113)
  • 4. D. P. Blecher, L. E. Labuschagne,
    Characterization of noncommutaive $ \mathcal{H}^{\infty},$
    Integr. Equ. Oper. Theory 56 (2006), 301-321. MR 2270840 (2007m:46101)
  • 5. D. P. Blecher, L. E. Labuschagne, Applications of Fuglede-Kadison determinant:
    Szegö's theorem and outers for noncommutative $ H^{p},$
    Trans. Amer. Math. Soc. 360 (2008), 6131-6147. MR 2425707 (2009m:46096)
  • 6. R. Exel,
    Maximal subdiagonal algebras,
    Amer. J. Math 110 (1988), 775-782. MR 955297 (90b:46114)
  • 7. T. Fack, H. Kosaki,
    Generalized $ s$-numbers of $ \tau$-measurable operators,
    Pac. J. Math 123 (1986), 269-300. MR 840845 (87h:46122)
  • 8. G. Ji, K.-S. Saito,
    Factorization in subdiagonal algebras,
    J. Funct. Anal. 159 (1998), 191-202. MR 1654186 (99k:46106)
  • 9. S. Kawamura, J. Tomiyana,
    On subdiagonal algebras associated with flows in operator algebras,
    J. Math. Soc. Japan 29 (1977), 73-90. MR 0454650 (56:12899)
  • 10. L. E. Labuschagne,
    A noncommutative Szegö theorem for subdiagonal subalgebras of von Neumann algebras.
    Proc. Amer. Math. Soc. 133 (2005), 3643-3646. MR 2163602 (2006d:46081)
  • 11. M. Marsalli,
    Noncommutative $ H^{2}$-spaces,
    Proc. Amer. Math. Soc. 125 (1997), 779-784. MR 1350954 (97e:46089)
  • 12. M. Marsalli, G. West,
    Noncommutative $ H^{p}$-spaces,
    J. Operator Theory 40 (1997), 339-355. MR 1660390 (2000b:46117)
  • 13. M. Marsalli, G. West,
    The dual of noncommutative $ H^{1}$,
    Indiana Univ. Math. J. 47 (1998), 489-500. MR 1647920 (99h:46122)
  • 14. M. McAsey, P. S. Muhly, K.-S. Saito,
    Nonselfadjoint crossed products (invariant subspaces and maximality),
    Trans. Amer. Math. Soc. 248 (1979), 381-409. MR 522266 (80j:46101b)
  • 15. G. Pisier, Q. Xu,
    Non-commutative $ L^{p}$-spaces,
    in Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, 1459-1517. MR 1999201 (2004i:46095)
  • 16. N. Randrianantoanina,
    Hilbert transform associated with finite maximal subdiagonal algebras,
    J. Austral. Math. Soc. (Series A) 65 (1999),388-404. MR 1660424 (2000a:46109)
  • 17. K.-S. Saito,
    On non-commutative Hardy spaces associated with flows on finite von Neumann algebras,
    Tohoku Math. J. 29 (1977), 585-595. MR 0463932 (57:3870)
  • 18. K.-S. Saito,
    A note on invariant subspaces for maximal subdiagonal algebras,
    Proc. Amer. Math. Soc. 77 (1979), 349-352. MR 545594 (81b:46078)
  • 19. M. Takesaki,
    Duality for crossed products and the structure of von Neumann algebras of type $ III$,
    Acta Math. 131 (1973), 249-310. MR 0438149 (55:11068)
  • 20. M. Terp, $ L^{p}$-spaces associated with an arbitrary von Neumann algebra,
    Notes, Math. Institute, Copenhagen Univ., 1981.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46L51, 46L52, 47L75

Retrieve articles in all journals with MSC (2010): 46L51, 46L52, 47L75


Additional Information

Turdebek N. Bekjan
Affiliation: College of Mathematics and Systems Sciences, Xinjiang University, Urumqi 830046, People’s Republic of China

DOI: https://doi.org/10.1090/S0002-9939-2010-10673-1
Keywords: von Neumann algebras, tracial subalgebra, subdiagonal algebra, $L^{2}$-density, $L^{p}$-factorization
Received by editor(s): November 30, 2009
Received by editor(s) in revised form: April 13, 2010
Published electronically: September 30, 2010
Additional Notes: The author was partially supported by NSFC grant No. 10761009
Communicated by: Marius Junge
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society