Multipliers and essential norm on the Drury-Arveson space

Authors:
Quanlei Fang and Jingbo Xia

Journal:
Proc. Amer. Math. Soc. **139** (2011), 2497-2504

MSC (2010):
Primary 47B10, 47B32, 47B38

DOI:
https://doi.org/10.1090/S0002-9939-2010-10680-9

Published electronically:
December 16, 2010

Corrigendum:
Proc. Amer. Math. Soc. 141 (2013), 363-368

MathSciNet review:
2784815

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is well known that for multipliers of the Drury-Arveson space , does not dominate the operator norm of . We show that in general does not even dominate the essential norm of . A consequence of this is that there exist multipliers of for which fails to be essentially hyponormal; i.e., if is any compact, self-adjoint operator, then the inequality does not hold.

**1.**N. Arcozzi, R. Rochberg and E. Sawyer,*Carleson measures for the Drury-Arveson Hardy space and other Besov-Sobolev spaces on complex balls*, Advances in Math, 218(4) (2008), 1107-1180. MR**2419381 (2009j:46062)****2.**W. Arveson,*Subalgebras of -algebras*. III.*Multivariable operator theory*, Acta Math. 181 (1998), 159-228. MR**1668582 (2000e:47013)****3.**W. Arveson,*The curvature invariant of a Hilbert module over*, J. Reine Angew. Math. 522 (2000), 173-236. MR**1758582 (2003a:47013)****4.**J. A. Ball and V. Bolotnikov,*Interpolation problems for multipliers on the Drury-Arveson space: From Nevanlinna-Pick to abstract interpolation problem*, Integr. Equ. Oper. Theory 62 (2008), 301-349. MR**2461123 (2010a:47034)****5.**J. A. Ball, T. T. Trent and V. Vinnikov,*Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces*, Op. Th. Adv. and App. 122 (2001), 89-138. MR**1846055 (2002f:47028)****6.**Z. Chen,*Characterizations of Arveson's Hardy space*, Complex Var. Theory Appl. 48 (2003), 453-465. MR**1974382 (2004c:32010)****7.**S. Costea, E. Sawyer and B. Wick,*The Corona Theorem for the Drury-Arveson Hardy space and other holomorphic Besov-Sobolev spaces on the unit ball in*, preprint.**8.**S. W. Drury,*A generalization of von Neumann's inequality to the complex ball*, Proc. Amer. Math. Soc. 68 (1978), 300-304. MR**480362 (80c:47010)****9.**Q. Fang and J. Xia,*Commutators and localization on the Drury-Arveson space*, preprint, 2009.**10.**D. Greene, S. Richter and C. Sundberg,*The structure of inner multipliers on spaces with complete Nevanlinna-Pick kernels*, J. Funct. Anal. 194 (2002), 311-331. MR**1934606 (2003h:46038)****11.**P. Halmos,*A Hilbert space problem book*, Second edition. Graduate Texts in Mathematics, 19, Springer-Verlag, New York-Berlin, 1982. MR**675952 (84e:47001)****12.**S. McCullough and T. T. Trent,*Invariant subspaces and Nevanlinna-Pick kernels*, J. Funct. Anal. 178 (2000), 226-249. MR**1800795 (2002b:47006)****13.**W. Rudin,*Function theory in the unit ball of*, Springer-Verlag, New York-Berlin, 1980. MR**601594 (82i:32002)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
47B10,
47B32,
47B38

Retrieve articles in all journals with MSC (2010): 47B10, 47B32, 47B38

Additional Information

**Quanlei Fang**

Affiliation:
Department of Mathematics, State University of New York at Buffalo, Buffalo, New York 14260

Email:
fangquanlei@gmail.com

**Jingbo Xia**

Affiliation:
Department of Mathematics, State University of New York at Buffalo, Buffalo, New York 14260

Email:
jxia@acsu.buffalo.edu

DOI:
https://doi.org/10.1090/S0002-9939-2010-10680-9

Keywords:
Multiplier,
Drury-Arveson space

Received by editor(s):
April 11, 2010

Received by editor(s) in revised form:
July 1, 2010

Published electronically:
December 16, 2010

Communicated by:
Richard Rochberg

Article copyright:
© Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.