Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 

 

Singular hypersurfaces possessing infinitely many star points


Authors: Filip Cools and Marc Coppens
Journal: Proc. Amer. Math. Soc. 139 (2011), 3413-3422
MSC (2010): Primary 14J70, 14N15, 14N20
Published electronically: March 3, 2011
MathSciNet review: 2813373
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that a component $ \Lambda$ of the closure of the set of star points on a hypersurface of degree $ d\geq 3$ in $ \mathbb{P}^N$ is linear. Afterwards, we focus on the case where $ \Lambda$ is of maximal dimension and the case where $ X$ is a surface.


References [Enhancements On Off] (What's this?)

  • 1. Edgardo Ciani, Sopra le superficie cubiche dotate di infiniti punti di Eckardt, Period. Mat. (4) 20 (1940), 240–245 (Italian). MR 0004489
  • 2. Filip Cools and Marc Coppens, Star points on smooth hypersurfaces, J. Algebra 323 (2010), no. 1, 261–286. MR 2564838, 10.1016/j.jalgebra.2009.09.010
  • 3. F. E. Eckardt, Ueber diejenigen Flächen dritten Grades, auf denen sich drei gerade Linien in einem Punkte schneiden, Math. Ann. 10 (1876), no. 2, 227–272 (German). MR 1509887, 10.1007/BF01442462
  • 4. Gerd Fischer and Jens Piontkowski, Ruled varieties, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 2001. An introduction to algebraic differential geometry. MR 1876644
  • 5. Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
  • 6. Steven L. Kleiman, Bertini and his two fundamental theorems, Rend. Circ. Mat. Palermo (2) Suppl. 55 (1998), 9–37. Studies in the history of modern mathematics, III. MR 1661859
  • 7. Eduard Looijenga, The complement of the bifurcation variety of a simple singularity, Invent. Math. 23 (1974), 105–116. MR 0422675
  • 8. O. V. Ljaško, Decompositions of simple singularities of functions, Funkcional. Anal. i Priložen. 10 (1976), no. 2, 49–56 (Russian). MR 0414929
  • 9. T.C. Nguyen, Star points on cubic surfaces, Ph.D. Thesis, RU Utrecht, 2000.
  • 10. Nguyen Chanh Tu, Non-singular cubic surfaces with star points, Vietnam J. Math. 29 (2001), no. 3, 287–292. MR 1933910
  • 11. Chanh Tu Nguyen, On boundaries of moduli spaces of non-singular cubic surfaces with star points, Kodai Math. J. 27 (2004), no. 1, 57–73. MR 2042791, 10.2996/kmj/1085143789
  • 12. Nguyen Chanh Tu, On semi-stable, singular cubic surfaces, Singularités Franco-Japonaises, Sémin. Congr., vol. 10, Soc. Math. France, Paris, 2005, pp. 373–389 (English, with English and French summaries). MR 2145966
  • 13. F. L. Zak, Tangents and secants of algebraic varieties, Translations of Mathematical Monographs, vol. 127, American Mathematical Society, Providence, RI, 1993. Translated from the Russian manuscript by the author. MR 1234494

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14J70, 14N15, 14N20

Retrieve articles in all journals with MSC (2010): 14J70, 14N15, 14N20


Additional Information

Filip Cools
Affiliation: Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium
Email: Filip.Cools@wis.kuleuven.be

Marc Coppens
Affiliation: Departement Industriel Ingenieur en Biotechniek, Katholieke Hogeschool Kempen, Kleinhoefstraat 4, B-2440 Geel, Belgium – and – Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium
Email: Marc.Coppens@khk.be

DOI: http://dx.doi.org/10.1090/S0002-9939-2011-10760-3
Received by editor(s): January 18, 2010
Received by editor(s) in revised form: August 19, 2010, and August 26, 2010
Published electronically: March 3, 2011
Communicated by: Lev Borisov
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.