Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Real quadratic function fields of Richaud-Degert type with ideal class number one


Author: Sunghan Bae
Journal: Proc. Amer. Math. Soc. 140 (2012), 403-414
MSC (2010): Primary 11R11, 11R29, 11R58
DOI: https://doi.org/10.1090/S0002-9939-2011-10910-9
Published electronically: June 7, 2011
MathSciNet review: 2846310
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We determine all real quadratic function fields of Richaud-Degert type with ideal class number one.


References [Enhancements On Off] (What's this?)

  • [A] Artin, E., Quadratische Körper im Gebeit der höheren Kongruenzen. I, II, Math. Z. 19 (1924), 153-246. MR 1544651
  • [FH] Feng, K. and Hu, W., On real quadratic function fields of Chowla type with ideal class number one, Proc. AMS 127 (5) (1999), 1301-1307. MR 1622805 (99h:11133)
  • [F1] Friesen, C., Continued fractions and real quadratic function fields, Thesis, Brown Univ., ProQuest LLC, Ann Arbor, MI (1989). MR 2637664
  • [F2] -, Class number divisibility of real quadratic function fields, Bull. Canad. Math. Soc. 35 (3) (1992), 361-370. MR 1184013 (93h:11130)
  • [G] Gonzalez, C., Class numbers of quadratic function fields and continued fractions, J. Number Th. 40 (1) (1992), 38-59. MR 1145853 (92k:11134)
  • [Ha] Hasse, H., Theorie der relativ-zyklischen algebrischen Funktionenkörper, insbesondere bei endlichem Konstantenkörper, J. Reine Angew. Math. 172 (1934), 37-54.
  • [HL] Hu, S. and Li, Y., The genus field of Artin-Schreier extensions, Finite Fields Appl. 16 (4) (2010), 255-264. MR 2646336
  • [M] Mollin, R. A., Class number two for real quadratic fields of Richaud-Degert type, Serdica Math. J. 35 (3) (2009), 287-300. MR 2567180 (2011a:11192)
  • [MW] Mollin, R. A. and Williams, H., Solution of the class number one problem for real quadratic fields of extended Richaud-Degert type, Number Theory, Proceedings of the 1st Conference of the Canadian Number Theory Association, held at the Banff Center, 1988 (Mollin, R. A., ed.), de Gruyter, 1990, pp. 417-425. MR 1106676 (92f:11144)
  • [O] Ono, T., Arithmetic of algebraic groups and its applications, St. Paul's International; Exchange Series Occasional Papers VI, St. Paul's Univ., Tokyo, 1986.
  • [Sa1] Sasaki, R., On a lower bound for the class number of an imaginary quadratic field, Proc. Japan Acad. Ser. A 62 (1) (1986), 37-39. MR 839802 (87i:11146)
  • [Sa2] -, Generalized Ono invariant and Rabinovitch's theorem for real quadratic fields, Nagoya Math. J. 109 (1988), 117-124. MR 931955 (89b:11084)
  • [Ste] Stein, A., Introduction to continued fraction expansions in real quadratic function fields, available at http://www.cacr.math.uwaterloo.ca/techreports/1999/corr99-16.ps.
  • [Sti] Stichtenoth, H., Algebraic function fields and codes, Springer-Verlag, 1993. MR 1251961 (94k:14016)
  • [WZ1] Wang, K. and Zhang, X., Lower bound for ideal class numbers of real quadratic function fields, Tsinghua Sci. Technol. 5 (4) (2000), 370-371. MR 1799337 (2001k:11232)
  • [WZ2] -, Ideal class groups and subgroups of real quadratic function fields, Tsinghua Sci. Technol. 5 (4) (2000), 372-373. MR 1799338 (2001k:11226)
  • [WZ3] -, Bounds of the ideal class numbers of real quadratic function fields, Acta Math. Sinica, English Series 20 (1) (2004), 169-174. MR 2056567 (2005f:11263)
  • [Z] Zuccherato, R., The continued fraction algorithm and regulator for quadratic function fields of characteristic $ 2$, J. Algebra 190 (2) (1997), 563-587. MR 1441964 (98a:11156)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11R11, 11R29, 11R58

Retrieve articles in all journals with MSC (2010): 11R11, 11R29, 11R58


Additional Information

Sunghan Bae
Affiliation: Department of Mathematics, Korea Advanced Institute of Science and Technology, Taejon 305-701, Republic of Korea
Email: shbae@kaist.ac.kr

DOI: https://doi.org/10.1090/S0002-9939-2011-10910-9
Received by editor(s): August 19, 2010
Received by editor(s) in revised form: November 22, 2010
Published electronically: June 7, 2011
Additional Notes: This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (2009-0063182)
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society