Smooth Livšic regularity for piecewise expanding maps

Authors:
Matthew Nicol and Tomas Persson

Journal:
Proc. Amer. Math. Soc. **140** (2012), 905-914

MSC (2010):
Primary 37D50, 37A20; Secondary 37A25

DOI:
https://doi.org/10.1090/S0002-9939-2011-10949-3

Published electronically:
July 11, 2011

MathSciNet review:
2869074

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the regularity of measurable solutions to the cohomological equation

**1.**J. Aaronson and M. Denker.*Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps*, Stochast. Dynam.**1**(2001), 193-237. MR**1840194 (2002h:37014)****2.**J. Aaronson, M. Denker, O. Sarig and R. Zweimüller,*Aperiodicity of cocycles and stochastic properties of non-Markov maps,*Stoch. Dyn.**4**(2004), 31-62. MR**2069366 (2005e:37015)****3.**V. Baladi,*Positive transfer operators and decay of correlations*, Advanced Series in Nonlinear Dynamics 16, World Scientific Publishing, River Edge, NJ, 2000. MR**1793194 (2001k:37035)****4.**H. Bruin, M. Holland and M. Nicol.*Livšic regularity for Markov systems*, Ergod. Th. and Dynam. Sys.**25**(2005), 1739-1765. MR**2183291 (2006j:37036)****5.**R. de la Llave, J. M. Marco and E. Moriyon,*Canonical perturbation theory of Anosov systems and regularity results for the Livsic cohomological equation*, Annals of Math. (2)**123**(1986), 537-611. MR**840722 (88h:58091)****6.**D. Fried,*The flat-trace asymptotics of a uniform system of contractions*, Ergodic Theory Dynam. Systems**15**(1995), no. 6, 1061-1073. MR**1366308 (97c:58124)****7.**S. Gouëzel,*Regularity of coboundaries for nonuniformly expanding maps*, Proceedings of the American Mathematical Society**134**:2 (2006), 391-401. MR**2176007 (2006g:37006)****8.**F. Hofbauer and G. Keller,*Ergodic properties of invariant measures for piecewise monotonic transformations*, Math. Z.**180**(1982), 119-140. MR**656227 (83h:28028)****9.**F. Hofbauer and G. Keller,*Equilibrium states for piecewise monotonic transformations*, Ergodic Theory and Dynamical Systems**2**(1982), 23-43. MR**684242 (85f:58069)****10.**O. Jenkinson.*Smooth cocycle rigidity for expanding maps and an application to Mostow rigidity,*Math. Proc. Camb. Phil. Soc.**132**(2002), 439-452. MR**1891682 (2002k:37027)****11.**H. Keynes and D. Newton.*Ergodic measures for non-abelian compact group extensions.*Compositio Math.**32**(1976), 53-70. MR**0400188 (53:4023)****12.**C. Liverani,*Decay of correlations for piecewise expanding maps*, journal of Statistical Physics**78**(1995), 1111-1129. MR**1315241 (96d:58077)****13.**A. N. Livšic.*Cohomology of dynamical systems*, Mathematics of the USSR Izvestija**6**(6) (1972), 1278-1301. MR**0334287 (48:12606)****14.**A. N. Livšic.*Homology properties of Y-systems*, Math. Notes**10**(1971), 758-763. MR**0293669 (45:2746)****15.**M. Nicol and A. Scott,*Livšic theorems and stable ergodicity for group extensions of hyperbolic systems with discontinuities*, Ergodic Theory and Dynamical Systems**23**(2003), 1867-1889. MR**2032492 (2004k:37051)****16.**M. Nicol and M. Pollicott,*Measurable cocycle rigidity for some noncompact groups*, Bull. Lond. Math. Soc.**31**(1999), 592-600. MR**1703845 (2000k:37004)****17.**M. Nicol and M. Pollicott,*Livšic theorems for semisimple Lie groups*, Erg. Th. and Dyn. Sys.**21**(2001), 1501-1509. MR**1855844 (2002h:37048)****18.**M. Nicol and A. Scott,*Livšic theorem and stable ergodicity for group extensions of hyperbolic systems with discontinuities,*Ergod. Th. and Dyn. Sys.**23**(2003), 1867-1889. MR**2032492 (2004k:37051)****19.**M. Noorani,*Ergodicity and weak-mixing of homogeneous extensions of measure-preserving transformations with applications to Markov shifts,*Monatsh. Math.**123**(1997), 149-170. MR**1430502 (98g:28023)****20.**W. Parry and M. Pollicott,*Zeta functions and closed orbits for hyperbolic systems*, Astérisque (Soc. Math. France), 187-188 (1990), 1-268. MR**1085356 (92f:58141)****21.**W. Parry and M. Pollicott.*The Livsic cocycle equation for compact Lie group extensions of hyperbolic systems*. J. London Math. Soc. (2)**56**(1997), 405-416. MR**1489146 (99d:58109)****22.**M. Pollicott and C. Walkden,*Livsic theorems for connected Lie groups,*Trans. Amer. Math. Soc.**353**(2001), 2879-2895. MR**1828477 (2002c:37045)****23.**M. Pollicott and M. Yuri,*Regularity of solutions to the measurable Livsic equation,*Trans. Amer. Math. Soc.**351**(1999), 559-568. MR**1621702 (99d:58110)****24.**A. Scott,*Livšic theorems and the stable ergodicity of compact group extensions of systems with some hyperbolicity*, thesis, University of Surrey (2003).**25.**C. Walkden,*Livsic theorems for hyperbolic flows,*Trans. Amer. Math. Soc.**352**(2000), 1299-1313. MR**1637106 (2000j:37036)****26.**C. Walkden,*Livsic regularity theorems for twisted cocycle equations over hyperbolic systems,*J. London Math. Soc.**61**(2000), 286-300. MR**1745387 (2001i:37048)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
37D50,
37A20,
37A25

Retrieve articles in all journals with MSC (2010): 37D50, 37A20, 37A25

Additional Information

**Matthew Nicol**

Affiliation:
Department of Mathematics, University of Houston, Houston, Texas 77204-3008

Email:
nicol@math.uh.edu

**Tomas Persson**

Affiliation:
Institute of Mathematics, Polish Academy of Sciences, ulica Śniadeckich 8, P.O. Box 21, 00-956 Warszawa, Poland

Address at time of publication:
Centre for Mathematical Sciences, Lund University, Box 118, 22 100 Lund, Sweden

Email:
tomasp@maths.lth.se

DOI:
https://doi.org/10.1090/S0002-9939-2011-10949-3

Received by editor(s):
July 23, 2010

Received by editor(s) in revised form:
December 14, 2010

Published electronically:
July 11, 2011

Additional Notes:
The second author was supported by EC FP6 Marie Curie ToK programme CODY

Communicated by:
Bryna Kra

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.