Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An analogue of Hilbert's Syzygy Theorem for the algebra of one-sided inverses of a polynomial algebra


Author: V. V. Bavula
Journal: Proc. Amer. Math. Soc. 140 (2012), 3323-3331
MSC (2010): Primary 16E10, 16S85, 16S99
DOI: https://doi.org/10.1090/S0002-9939-2012-11177-3
Published electronically: February 2, 2012
MathSciNet review: 2929003
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An analogue of Hilbert's Syzygy Theorem is proved for the algebra $ \mathbb{S}_n (A)$ of one-sided inverses of the polynomial algebra $ A[x_1, \ldots , x_n]$ over an arbitrary ring $ A$:

$\displaystyle \textrm {l.gldim}(\mathbb{S}_n(A))= \textrm {l.gldim}(A) +n.$

The algebra $ \mathbb{S}_n(A)$ is noncommutative, neither left nor right Noetherian and not a domain. The proof is based on a generalization of the Theorem of Kaplansky (on the projective dimension) obtained in the paper. As a consequence it is proved that for a left or right Noetherian algebra $ A$:

$\displaystyle \textrm {w.dim} (\mathbb{S}_n(A))= \textrm {w.dim} (A) +n.$


References [Enhancements On Off] (What's this?)

  • 1. M. Auslander, On the dimension of modules and algebras (3). Global dimension, Nagoya Math. J. 9 (1955) 67-77. MR 0074406 (17:579a)
  • 2. R. Baer, Inverses and zero-divisors, Bull. Amer. Math. Soc. 48 (1942) 630-638. MR 0006997 (4:70a)
  • 3. H. Bass, Algebraic $ K$-theory. W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491 (40:2736)
  • 4. V. V. Bavula, Global dimension of generalized Weyl algebras. Representation theory of algebras (Cocoyoc, 1994), 81-107, CMS Conf. Proc., 18, Amer. Math. Soc., Providence, RI, 1996. MR 1388045 (97e:16018)
  • 5. V. V. Bavula, Tensor homological minimal algebras, global dimension of the tensor product of algebras and of generalized Weyl algebras. Bull. Sci. Math. 120 (1996) no. 3, 293-335. MR 1399845 (97f:16015)
  • 6. V. V. Bavula, The algebra of one-sided inverses of a polynomial algebra, Journal Pure Appl. Algebra 214 (2010) 1874-1897. MR 2608115 (2011f:16069)
  • 7. V. V. Bavula, The group of automorphisms of the algebra of one-sided inverses of a polynomial algebra, arXiv:math.AG/0903.3049.
  • 8. V. V. Bavula, $ {\rm K}_1(\mathbb{S}_1)$ and the group of automorphisms of the algebra $ \mathbb{S}_2$ of one-sided inverses of a polynomial algebra in two variables, Journal of K-theory and its Appl. to Algebra, Geometry, Analysis and Topology, to appear, arXiv:0906.0600.
  • 9. V. V. Bavula, The group of automorphisms of the algebra of one-sided inverses of a polynomial algebra, II. arXiv:math.AG:0906.3733.
  • 10. V. V. Bavula, The group $ {\rm K}_1(\mathbb{S}_n)$ of the algebra of one-sided inverses of a polynomial algebra, arXiv:math.KT:1005.3550.
  • 11. J.-E. Bjork, The global homological dimension of some algebras of differential operators, Invent. Math. 17 (1972) 67-78. MR 0320078 (47:8619)
  • 12. K. A. Brown, C. R. Hajarnavis and A. B. MacEacharn, Noetherian rings of finite global dimension. Proc. London Math. Soc. 44 (1982) 349-71. MR 647437 (84a:16025)
  • 13. S. Eilenberg, A. Rosenberg and D. Zelinsky, On the dimension of modules and algebras, VIII. Dimension of tensor products, Nagoya Math. J. 12 (1957) 71-93. MR 0098774 (20:5229)
  • 14. L. Gerritzen, Modules over the algebra of the noncommutative equation $ yx=1$. Arch. Math. (Basel) 75 (2000) no. 2, 98-112. MR 1767169 (2001c:16013)
  • 15. K. R. Goodearl, Global dimension of differential operator rings. II, Trans. Amer. Math. Soc. 209 (1975) 65-85. MR 0382359 (52:3244)
  • 16. N. Jacobson, Some remarks on one-sided inverses, Proc. Amer. Math. Soc. 1 (1950) 352-355. MR 0036223 (12:75e)
  • 17. N. Jacobson, ``Structure of rings'', Amer. Math. Soc. Colloq., Vol. XXXVII (rev. ed.), Amer. Math. Soc., Providence, RI, 1968. MR 0222106 (36:5158)
  • 18. I. Kaplansky, Fields and Rings, Chicago Lectures in Mathematics. University of Chicago Press, Chicago-London, 1969. MR 0269449 (42:4345)
  • 19. G. S. Rinehart and A. Rosenberg, The global dimensions of Ore extensions and Weyl algebras. Algebra, topology, and category theory (a collection of papers in honor of Samuel Eilenberg), pp. 169-180. Academic Press, New York, 1976. MR 0409563 (53:13317)
  • 20. A. Rosenberg and J. T. Stafford, Global dimension of Ore extensions. Algebra, topology, and category theory (a collection of papers in honor of Samuel Eilenberg), pp. 181-188. Academic Press, New York, 1976. MR 0409564 (53:13318)
  • 21. B. Stenström, Rings of quotients. An introduction to methods of ring theory. Springer-Verlag, New York-Heidelberg, 1975. MR 0389953 (52:10782)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 16E10, 16S85, 16S99

Retrieve articles in all journals with MSC (2010): 16E10, 16S85, 16S99


Additional Information

V. V. Bavula
Affiliation: Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, United Kingdom
Email: v.bavula@sheffield.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-2012-11177-3
Keywords: The algebras of one-sided inverses, the algebra of one-sided inverses of a polynomial algebra, the global dimension, Hilbert’s Syzygy Theorem, the projective dimension, the weak dimension.
Received by editor(s): June 2, 2010
Received by editor(s) in revised form: April 1, 2011
Published electronically: February 2, 2012
Communicated by: Birge Huisgen-Zimmermann
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society